(200) R290 mo.74-336 UNITED STATES DEPARTMENT OF THE INTERIOR U, 5, GEOLOGICAL SURVEY Reports-Open file scries 1 MAGNITUDE AND FREQUENCY OF FLOODS IN WASHINGTON By J. E. Cummans, M. R. Collings, and E. G. Nassar Open-File Report 74-336 Prepared in cooperation with the State of Washington Department of Highways ## :CONTENTS | | Page | |--|------| | Abstract | 1 | | Introduction | 2 | | Purpose and scope | 2 | | Acknowledgments | 3 | | Previous flood studies in Washington | 3 | | Description of the area | 4 | | Physiographic provinces | 4 | | Climate | 4 | | Flood-runoff characteristics | 5 | | Peak-discharge data used in the analysis | 6 | | Flood-frequency analysis | 6 | | Regression analysis | 8 | | Results | 12 | | Evaluation of results | 13 | | Application of results | 14 | | Limitations and comments | 18 | | References cited | 19 | # **ILLUSTRATIONS** (Plates are in pocket) # PLATES 1-3. Maps of Washington showing: - Physiographic provinces and locations of gaging stations. - 2. Mean annual precipitation. - 3. Flood regions discussed in report. # TABLES | | | Pa | ge | |-------|----|---|----| | TABLE | 1. | Discharges for selected flood frequencies, peak of record, and years of peak record, at gaging stations in Washington | 21 | | | 2. | Indices for basin and climatic characteristics used in multiple regressions | 36 | | | 3. | Summary of regression coefficients for equations, for regions shown on plate 3 | 45 | | | 4. | Maximum and minimum values of basin and climatic characteristics at gaging stations, by flood regions | 46 | The following factors are provided for conversion of English values used in this report to metric values: | Multiply | Ву | To obtain | |--|---------|-----------------------------------| | Inches | 25.40 | millimetres (mm) | | Feet (ft) | 0.3048 | metres (m) | | Miles (mi) | 1.609 | kilometres (km) | | Square miles (mi ²) | 2.590 | square kilometres (km²) | | Cubic feet per second (ft ³ /s) | 0.02832 | cubic metres per second (m^3/s) | # MAGNITUDE AND FREQUENCY OF FLOODS IN WASHINGTON By J. E. Cummans, M. R. Collings, and E. G. Nassar #### **ABSTRACT** Relations are provided to estimate the magnitude and frequency of floods on Washington streams. Annual-peak-flow data from stream gaging stations on unregulated streams having 10 years or more of record were used to determine a log-Pearson Type III frequency curve for each station. Flood magnitudes having recurrence intervals of 2, 5, 10, 25, 50, and 100 years were then related to physical and climatic indices of the drainage basins by multiple-regression analysis using the Biomedical Computer Program BMDO2R. These regression relations are useful for estimating flood magnitudes of the specified recurrence intervals at ungaged or short-record sites. Separate sets of regression equations were defined for western and eastern parts of the State, and the State was further subdivided into 12 regions in which the annual floods exhibit similar flood characteristics. Peak flows are related most significantly in western Washington to drainage-area size and mean annual precipitation. In eastern Washington they are related most significantly to drainage-area size, mean annual precipitation, and percentage of forest cover. Standard errors of estimate of the estimating relations range from 25 to 129 percent, and the smallest errors are generally associated with the more humid regions. #### INTRODUCTION ## Purpose and Scope The purpose of this report is to provide information by which the magnitude and frequency of floods may be estimated for any site on naturally flowing (unregulated) streams within the State of Washington. For stream-gaging sites having 10 or more consecutive years of annual flood records, flood magnitudes having selected frequencies of occurrence are presented in tables. For ungaged or short-period record sites, equations are provided that may be solved to obtain a flood estimate by use of data measured from topographic and climatic maps. The evaluation of the flood potential at a site includes determination of (1) the magnitude, or peak discharge of the floods, and (2) the frequency, or probability of a flood of a specific peak discharge occurring. This evaluation is needed in designing structures or planning land use along streams and on stream flood plains. Highways, bridges, and culverts must be designed weighing the economic considerations of their intended usefulness, expected life, and the endangerment to human lives with respect to the costs of too large or too small a design. The equations presented in the report are subject to certain limitations, which are discussed in the report. Because flood-peak information is often needed at sites where gaging-station data are not available, basin and climatic indices are used to define equations from which flood magnitudes at selected frequencies, or "recurrence intervals," may be estimated. A recurrence interval is the average interval of time, in years, within which a given flood will be exceeded once as an annual maximum. A 100-year flood is one which has one chance in a hundred each year (1-percent probability) of being exceeded, and which is expected to be exceeded on an average of once in 100 years. An assumption is made that the probability of future flood magnitudes can be evaluated from past experience. There is no method of predicting when a flood of a certain frequency or magnitude will occur. It is possible to have more than one 100-year flood within a period of that length, and it is possible that two could occur as consecutive annual peaks, though that probability is small. Flood magnitude as defined in this report applies to the amount of water discharge only. The user of the report, if interested in stage, will need to resort to the hydraulic principles of flood routing, or to gaging-station data and flood-profile information that have been obtained by various agencies. The user also should consider that some high river stages may be caused by ice or logjams that are not accompanied by a significant amount of water. The concepts and procedures used in the study are in accord with those currently recommended by engineers and hydrologists and are described in detail by Beard (1962, section 7), Benson (1962a,b; 1964), Riggs (1968a,b; 1973), and the [U.S.] Water Resources Council (1967). ## Acknowledgments This study was made under a cooperative agreement between the Washington State Department of Highways and the U.S. Geological Survey. The authors are grateful to K. L. Walters and R. D. Mac Nish of the Geological Survey for respectively delineating geologic regions of related porosity, and providing aid in computer programming. The constructive criticism and suggestions of J. R. Crippen, G.G. Parker, Jr., D. M. Thomas, and H. F. Matthai of the Geological Survey were of benefit to the final report. # Previous Flood Studies in Washington Some flood-frequency and historical flood data for the period prior to 1952 are presented in reports by Anderson (1948), Rantz and Riggs (1949), and Stewart and Bodhaine (1961). These data are useful for the specific areas and streams described, but do not provide methods to apply the data to ungaged sites in Washington. Later studies that provide flood-estimating techniques are those of Bodhaine and Robinson (1952), Bodhaine and Thomas (1960), Thomas, Broom, and Cummans (1963), Bodhaine and Thomas (1964), and Hulsing and Kallio (1964). Many flood data have been obtained since these earlier studies, and methods of analysis have been improved. In general, greater confidence can be placed in the estimates derived from the techniques described in this report. #### DESCRIPTION OF THE AREA # Physiographic Provinces The principal topographic features of Washington are shown in the inset map on plate 1 (in pocket) and include: (1) the coastal plain which forms the western boundary of the State along the Pacific Ocean; (2) the Willapa Hills which rise to about 3,000 feet (914 m); (3) the Olympic Mountains which rise to nearly 8,000 feet (2,440 m); (4) the Puget Trough, a lowland separating the Willapa Hills and Olympic Mountains from the Cascade Range--and which includes the Cowlitz and Chehalis River valleys in its southern part--and the Puget Sound lowland in the northern part; (5) the Cascade Range which rises from wooded hills of less than 3,000 feet (914 m) on the south to glaciered peaks of over 9,000 feet (2,740 m) on the north, with Mount Rainier rising to 14,410 feet (4,392 m) as the highest point in the State; (6) the Columbia Plateau, a series of plains, low ridges, and coulees; (7) the Okanogan Highlands, a series of north-trending ridges and valleys, and (8) the Blue Mountains, which rise to 6,401 feet (1,951 m). # Climate Washington is separated by the Cascade Range into two climatically different regions. Western Washington has a predominantly marine-type climate, with cool, dry summers and mild, wet winters influenced by the air currents from the Pacific Ocean, whereas eastern Washington has warm, dry summers and cold winters frequently characterized by mid-continent conditions. Mean annual precipitation varies widely in Washington (pl. 2 in pocket). A persistent pattern of winter storms moves landward from the Pacific Ocean. The heaviest precipitation on the mainland, approximately 250 inches (6,350 mm) annually, occurs as the moisture-laden air passes northeasterly over the Olympic Mountains. Farther south the storms pass over the lower Willapa Hills where maximum annual precipitation is about 120 inches (3,050 mm). A rain-shadow effect occurs on the northeastern side of the Olympic Mountains where only about 15 inches (380 mm) of precipitation occurs annually; that area has the least annual precipitation in western
Washington. The Puget Trough receives about 30-50 inches (760-1,270 mm) of precipitation annually. Winter snowfall is light at the lower elevations along the Pacific Coast and increases rapidly with elevation and distance from the ocean. Annual precipitation increases along the Cascade Range which receives from 100 to 200 inches (2,540-5,080 mm), depending on elevation. Daily rates of precipitation, at a 2-year frequency of occurrence can be very high in western Washington, up to about 9 inches (230 mm), although 2-4 inches (50-100 mm) is more common at the lower elevations. Annual precipitation in eastern Washington, east of the Cascade Range, ranges from about 7 inches (180 mm) at Pasco, near the confluence of the Columbia and Snake Rivers, to as much as 60 inches (1,520 mm) in the hills and mountains along the northern, eastern, and southeastern margins of the Columbia Plateau. In the drier parts of eastern Washington, high-intensity rainfall associated with thunderstorm activity during the summer months occurs in localized areas for short periods. These storms occasionally cause extreme flood peaks to occur in small drainage areas. #### FLOOD-RUNOFF CHARACTERISTICS Floods in western Washington usually occur from storms of high-intensity rainfall during October-March; this runoff is at times augmented by water from rapid snowmelt. The runoff increases rapidly and generally recedes rapidly, with flooding generally occurring for only a day or two on tributary streams and for 2 to 5 days on the larger rivers. Many of the large rivers of western Washington have extensive flood plains subject to periodic inundation. Some of the rivers have a secondary high-runoff period later in the spring when snowpacks in the mountains are melting. Peak flows of the lower elevation main-stem streams are usually larger during the October-March period of high precipitation than during the spring snowmelt period. In eastern Washington the peak runoff of streams draining the eastern Cascades and the mountains and hills of the northern part of the region generally occurs from snowmelt during April-June. In the southern part of eastern Washington, the more damaging floods have occurred from rain melting snow on frozen ground. In this area intense summer thunderstorms also may cause large runoffs from small drainage areas. The streams in the arid region of south-central eastern Washington, where precipitation is less than 9-10 inches (230-250 mm) annually, have runoff only in about 1 of 3 years. #### PEAK-DISCHARGE DATA USED IN THE ANALYSIS The flood data used in the analysis were the annual maximum instantaneous discharges obtained for 10 or more years at 450 sites within the State and at two sites in British Columbia. Only those records were used where floodflows were not significantly altered by upstream regulation or diversion. Table 1 lists the maximum discharges during the period of record for each gaging station used in the analysis. The stations are listed in downstream order by number assigned by the U.S. Geological Survey. The first two digits (12,13, or 14) designate the major basin subdivisions of the State (pl.1). Part 12 streams are tributary to the Pacific Ocean or the Columbia River upstream from the mouth of the Snake River, Part 13 streams are tributary to the Snake River, and Part 14 streams are tributary to the Columbia River below the mouth of the Snake River. The locations of the gages are shown in plate 1 (in pocket). #### FLOOD-FREQUENCY ANALYSIS As recommended by the [U.S.] Water Resources Council (1967) the log-Pearson Type III distribution was used as the base method for estimating flow-frequency relation at gaged sites. Graphical frequency curves were defined also to visually check the applicability of a log-Pearson Type III relation for each gaging site. Frequency data are tabulated in table 1. Where outliers (extremely high or low values for annual peaks) caused a poor graphical relation, the log-Pearson Type III relation was abandoned, and a graphical curve was fitted eliminating the outlier. Treatment of outliers was necessary for several sites principally in and adjacent to the arid parts of eastern Washington. As with other techniques, it is possible with the log-Pearson method to mathematically extend the fitted curve to a far greater recurrence interval than is reasonably defined by the length of record available at a site. To restrict unwarranted extensions, frequency curves were defined only to the following recurrence intervals on the basis of available years of flood record: | Recurrence | interval | (years) | 10 | 25 | 50 | 100 | |------------|-----------|---------|----|----|----|------------| | Years | of record | l | 10 | 15 | 20 | 2 5 | Frequency data derived from the log-Pearson curve developed for each station and listed in table 1 reflect application of these guidelines. The accuracy of using 10 or 20 years of record at a selected gaging station to estimate flows for greater recurrence intervals is depicted by the data in the example below, for the Skykomish River near Gold Bar (sta. 12134500). Computed floods from a log-Pearson curve, which was derived from annual peaks at the gaging station for the 40-year period 1929-68, are shown in the second column of the following table. The succeeding columns list computed floods from two 20-year periods and four 10-year periods of the 40-year period of record. Peak discharge, in cubic feet per second, of Skykomish River near Gold Bar | Recurrence | Period | | | | | | | | | | | | |------------|----------|---------|---------|----------|---------|---------|---------|--|--|--|--|--| | interval | 40 years | 20 y | ears | 10 years | | | | | | | | | | (years) | 1929-68 | 1929-48 | 1949-68 | 1929-38 | 1939-48 | 1949-58 | 1959-68 | | | | | | | 2 | 36,100 | 36,200 | 36,000 | 39,400 | 33,800 | 34,400 | 36,600 | | | | | | | 10 | 69,400 | 73,000 | 66,600 | 90,200 | 57,400 | 66,500 | 68,700 | | | | | | | 25 | 87,800 | 95,500 | 81,900 | 121,000 | 71,300 | 81,700 | 88,600 | | | | | | | 50 | 102,000 | 114,000 | 93,100 | 146,000 | 82,500 | 92,500 | 105,000 | | | | | | | 100 | 117,000 | 134,000 | 104,000 | 173,000 | 94,600 | 103,000 | 123,000 | | | | | | Computed magnitudes from the 20-year periods vary by only 0.3 percent from that for the 40-year period at the 2-year level; at this level the computed discharges for the 10-year periods vary by as much as 9 percent from the long-term value. At the 100-year level, computed discharges for the 20-year periods differ by 14 percent and 11 percent from the 40-year period, and computed discharges for the 10-year periods vary as much as 48 percent from the 40-year period. However, these variations are not necessarily representative of those at other sites. #### REGRESSION ANALYSIS Multiple-regression analyses were used to define mathematical equations between flood discharges of selected frequencies (dependent variable) and the topographic and climatic characteristics of the drainage basins (independent variables). This type of analysis includes an evaluation of the estimating effectiveness of each independent variable and an evaluation of the accuracy of each defined equation. An independent variable is used in an equation only if there is a 95-percent probability that the variable aids in providing an estimate. The accuracy of each defined equation is indicated by a "standard error of estimate" which is a range of error such that an estimate by the regression equation is within this range of the station value at about two of three sites and within twice this range of the station value at 19 of 20 sites. The regression analysis used a mathematical model of the form $$Q_T = \underline{a} A^{b_a} B^{b_b} C^{b_c} ... N^{b_n}$$ where Q_T is a flood peak magnitude having a T-year recurrence interval, in cubic feet per second; A B C...N are physical and climatic indices of the drainage basins; <u>a</u> is a regression constant defined by the regression analysis; and b_a b_b ... b_n are regression coefficients defined by regression analysis. Step-forward regression analyses were performed using the University of California at Los Angeles Biomedical Computer Program BMDO2R. With this program, a single flow characteristic, such as the 2-year flood, was selected as the dependent variable. The computer program then defined the a and b values in the relation between that dependent variable and the one independent variable most effective in explaining the difference between flow magnitudes of the various drainage basins. program also checked the effectiveness of the independent variable by defining the probability that b was not zero, and computed the standard error of estimate of the relation. Automatically, the computer program then computed the a and b values of an equation using the two independent variables most effective in explaining flow-magnitude differences, checked the effectiveness of both independent variables, and evaluated the standard error of estimate. The routine of recomputation based on one additional independent variable was continued until no grouping was possible that had a regression coefficient for each independent variable with a 95-percent probability of difference from zero. At this time, a new dependent variable, such as the 5-year-flood magnitude, was selected and the whole process was repeated. An important part of the analysis was appraisal of residual errors, which are the differences between flood discharges from the frequency curves and the estimated discharges from regression relations. These residual errors from defined relations were plotted on a map and inspected for areal groupings. In the actual analysis, data from all 450 gaging stations were first used to define a set of regression equations. The residual errors showed areal groupings and very large standard errors of estimate, thereby indicating that no single set of equations was applicable statewide. Numerous areal
groupings of stations then were tried in separate regression studies in an effort to define the most practical set of equations. The set of estimating equations finally selected as most practical were defined from two areal groupings, one based on data for all sites in western Washington (west of the Cascade Range crest) and the other for all sites in eastern Washington. Equations for western Washington used drainage area and mean annual precipitation as the independent variables, while equations for eastern Washington also include forest cover as an estimating variable. Maps of residual errors from these equations also showed areal groupings. Examinations of these groupings indicated that they were related to geologic differences. On the basis of the areal groupings of residual errors, the State was divided into 12 regions (pl. 3 in pocket) using differences in surficial-soils porosity to the extent possible to define the regional boundaries. The drainage-basin and climatic characteristics computed for each gaging station and used as independent variables in this study are listed in table 2 and are described as follows: - Drainage area, A, in square miles, as measured by planimeter from the best available maps. Parts of the area that do not have an overland drainage are considered noncontributing and are not included in the area. - Mean basin elevation, E, in feet above mean sea level, determined by superimposing a rectangular grid over a contour map of the drainage area, and tabulating and averaging the elevations at the intersection of grids. The grid should provide at least 25 values. - 3. Forest cover, F, expressed as the percentage of the drainage area covered by forests, as determined by the grid method from a topographic map. A minimum value of 0.01 percent is used to avoid the zero values that cannot be accommodated in the equations used in this study. - 4. Main channel slope, SLP, in feet per mile. This is the average slope of the stream channel between points that are 10 and 85 percent of the distance along the main channel from between the desired site to the upstream basin border. At stream junctions the main channel is the one draining the largest area. Channel length is measured by opisometer or by draftsman's dividers set at a 0.1-mile equivalent. - 5. Area of lakes and ponds, LK, expressed as the percentage of the total drainage area occupied by lakes and ponds, as determined by planimeter or a transparent grid overlay. A minimum value of 0.01 percent is used to avoid the zeros that cannot be accommodated in the equations defined in this study. - 6. Length of main channel, L, in miles. This is the distance along the main channel from the desired site to the upstream basin boundary. The stream length is not extended through a noncontributing part of the drainage. - Length is measured from the best available map by use of an opisometer or by draftsman's dividers set at a 0.1-mile equivalent. - 7. Source elevation, SE, in feet above mean sea level. This is the elevation at the basin border at the source of the largest stream. - 8. Gage elevation, GE, in feet above mean sea level. This is the elevation of the site for which data are being computed. - 9. Mean annual precipitation over the drainage basin, P, in inches, as determined by the grid method from the isohyetal map (pl. 2 in pocket) prepared by the U.S. Weather Bureau (1965). - 10. Mean daily minimum January temperature, T, over the drainage area, in degrees Fahrenheit, as obtained from the [U.S.] National Oceanic and Atmospheric Administration (1965, p. 23). #### RESULTS The regression relations selected as the most practical were as follows: | For western Washington: | For eastern Washington: | |---------------------------------|---| | $Q_2 = a A^{0.86} P1.51$ | $Q_5 = a A^{0.90} p^{1.35} p^{-0.21}$ | | $Q_5 = a A^{0.86} P^{1.53}$ | $Q_{10} = a A^{0.88} P^{1.16} F^{-0.23}$ | | $Q_{10} = a A^{0.85} P^{1.54}$ | $Q_{25} = a A^{0.87} P^{1.03} F^{-0.25}$ | | $Q_{25} = a A^{0.85} p^{1.56}$ | $Q_{50} = a A^{0.86} p^{0.95} F^{-0.27}$ | | $Q_{50} = a A^{0.86} p^{1.58}$ | $Q_{100} = a A^{0.85} P^{0.89} F^{-0.29}$ | | $Q_{100} = a A^{0.86} p^{1.60}$ | | - Q_T is the flood magnitude for recurrence interval T, in cubic feet per second. No equation was defined for Q₂ in eastern Washington because the value was zero at a number of sites; - A is drainage area size, in square miles; - P is mean annual precipitation, in inches; - F is forest cover, in percent of drainage area, and - <u>a</u> is a regression constant that varies for each region and equation. The equations for each region are given in table 3. The first column indicates the recurrence interval (Q_T) for the Q_2 , Q_5 , Q_{10} , Q_{25} , Q_{50} , and Q_{100} floods. The other columns show the regression constant, the regression coefficients for each of the significant basin or climatic characteristics, and the percentage standard error of estimate. #### EVALUATION OF RESULTS The study defined relations between selected drainagebasin and climatic characteristics and peak runoff at selected The basin and climatic characteristics selected frequencies. were those determined to be the most significant. For streams in western Washington, drainage-area size was the most significant characteristic related to flood runoff and was followed closely by annual precipitation. Better results (smaller standard errors of estimate) appeared to coincide with areas of greater annual precipitation. Larger standard errors of estimate were obtained for sites at lower elevations where porosity of the soil cover also is generally greater. is no strong reasoning for the pattern of some of the regional areas determined from residuals in western Washington. annual precipitation index probably is of variable accuracy in many areas where measurement of that index is sparse. standard errors of estimate varied from 24.6 to 60.7 percent, respectively, for the low to high recurrence intervals for the equations of best fit in western Washington. For streams in eastern Washington, drainage-area size was the most significant characteristic. Precipitation and forest cover also helped reduce the standard error of estimate significantly. Standard error of estimates for the equations of best fit in eastern Washington ranged from 41.7 to 129 percent, being lowest in the more humid area of northeastern Washington. The errors of estimate were generally greater, on the average, in eastern Washington. This is believed attributable to less average total precipitation, more variability of precipitation in the semiarid parts, and generally shorter streamflow records and sparser coverage of the area with streamflow data than in western Washington. The precipitation index is from widely separated data in eastern Washington and its use, where not accurately measured, could be a source of the larger errors of estimates. #### APPLICATION OF RESULTS Computation of a flood of a desired frequency at an ungaged site is made as follows: - 1. From the map showing flood regions (pl. 3 in pocket), select the region in which the site is located. - 2. From the appropriate region in table 3 determine the flood equation to be used for the desired recurrence interval. - 3. Compute the basin and climatic characteristics required as described on pages 10-11. - 4. Substitute values determined in step 3 into equation from step 2 and solve for the flood discharge. For example, to determine the discharge for the 50-year flood at an ungaged site in region II: The applicable equation for the 50-year flood in region II is $$Q_{50} = 0.186 A^{0.86} P^{1.58}$$. Assuming that the drainage area is 50 mi² and that the mean annual precipitation determined by the grid method from plate 2 for the drainage area is 60 inches, $$Q_{50} = 0.186 \text{ A}^{0.86} \text{ p}^{1.58}$$ $$= (0.186)(50)^{0.86}(60)^{1.58}$$ $$= (0.186)(28.9)(645)$$ $$= 3,470 \text{ ft}^3/\text{s} (98 \text{ m}^3/\text{s}).$$ If the drainage basin is located in more than one region, the desired flood value should be computed by the appropriate equation for each region. The final value is obtained by weighting the results on an areal basis. An example of a computation for an area falling in two regions is as follows: Assume the 100-year flood is desired for a 100-mi² area of which 25 mi² is in region II, and 75 mi² is in region III. Average precipitation for the entire area is 50 inches. The equations for the 100-year flood for the two regions are: Region III, 0.194 $$A^{0.86} P^{1.60}$$ Region III, 0.102 $A^{0.86} P^{1.60}$. The 100-year flood discharge is first computed for each region, using the drainage basin and climatic characteristics, as follows: # Region II $$Q_{100} = 0.194 \text{ A}^{0.86} \text{ p}^{1.60}$$ $$= (0.194)(100)^{0.86}(50)^{1.60}$$ $$= (0.194)(52.5)(523)$$ $$= 5,330 \text{ ft}^{3}/\text{s} (151 \text{ m}^{3}/\text{s}) .$$ # Region III $$Q_{100} = 0.102 \text{ A}^{0.86} \text{ p}^{1.60}$$ $$= (0.102)(100)^{0.86}(50)^{1.60}$$ $$= (0.102)(52.5)(523)$$ $$= 2.800 \text{ ft}^{3}/\text{s} (79.2 \text{ m}^{3}/\text{s}).$$ The desired flood-discharge value, weighted on the basis of the area in each region, is $$\frac{2,800(3) + 5,320(1)}{4} = 3,430 \text{ ft}^{3}/\text{s} (97.1 \text{ m}^{3}/\text{s}).$$ To aid the user, the following tables provide a listing of selected numbers raised to exponents used in the equations. | | | | V | alue of | number | raised | to exp | onent | | | | |--------|-------|-------|-------|---------|--------|---------|--------|-------|------|------|------| | Number | | | | | E | xponent | | | | | | | Number | -0.21 | -0.23 | -0.25 | -0.27 | -0.29 | 0.85 | 0.86 | 0.87 | 0.88 | 0.89 | 0.90 | | 0.01 | 2.63 | 2.88 | 3.16 | 3.47 | 3.80 | | | | | | | | 1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | 2 | .86 | .85 | .84 | . 83 | .82 | 1.80 | 1.82 | 1.83 | 1.84 | 1.85 | 1.87 | |
3 | .79 | .78 | .76 | .74 | .73 | 2.54 | 2.57 | 2.60 | 2.63 | 2.66 | 2.69 | | 5 | .71 | .69 | .67 | .65 | .63 | 3.93 | 3.99 | 4.06 | 4.12 | 4.19 | 4.26 | | 10 | .62 | .59 | .56 | .54 | .51 | 7.08 | 7.24 | 7.41 | 7.59 | 7.76 | 7.94 | | 20 | .53 | .50 | .47 | .45 | . 42 | 12.8 | 13.1 | 13.5 | 14.0 | 14.4 | 14.8 | | 30 | .49 | .46 | .43 | .40 | .37 | 18.0 | 18.6 | 19.3 | 19.9 | 20.6 | 21.4 | | 40 | .46 | .43 | .40 | . 37 | .34 | 23.0 | 23.9 | 24.8 | 25.7 | 26.7 | 27.7 | | 50 | .44 | .41 | .38 | .35 | .32 | 27.8 | 28.9 | 30.1 | 31.3 | 32.5 | 33.8 | | 60 | .42 | .39 | .36 | .33 | .31 | 32.5 | 33.8 | 35.2 | 36.7 | 38.2 | 39.8 | | 70 | .41 | .38 | .35 | .32 | .29 | 37.0 | 38.6 | 40.3 | 42.0 | 43.9 | 45.8 | | 80 | .40 | .36 | .33 | .31 | .28 | 41.5 | 43.3 | 45.3 | 47.3 | 49.4 | 51.6 | .27 45.8 .26 50.1 47.9 52.5 50.1 55.0 52.4 57.5 54.9 60.3 57.4 63.1 90 100 .39 .38 . 36 .35 .32 .32 .30 .29 | | | | | Va] | ue of nu | mber rais | ed to exp | onent | | | | | | |------|------|----------|------|--------|----------|-----------|-----------|-------|-------|-------|--|--|--| | Num- | | Exponent | | | | | | | | | | | | | ber | 0.95 | 1.03 | 1.16 | 1.35 | 1.51 | 1.53 | 1.54 | 1.56 | 1.58 | 1.60 | | | | | 7 | 6.35 | 7.42 | 9.57 | 13.8 | 18.9 | 19.6 | 20.0 | 20.8 | 21.6 | 22.5 | | | | | 10 | 8.91 | 10.7 | 14.5 | · 22.4 | 32.4 | 33.9 | 34.7 | 36.3 | 38.0 | 39.8 | | | | | 20 | 17.2 | 21.9 | 32.3 | 57.1 | 92.2 | 97.9 | 101 | 107 | 114 | 121 | | | | | 30 | 25.3 | 33.2 | 51.7 | 98.7 | 170 | 182 | 188 | 202 | 216 | 231 | | | | | 40 | 33.3 | 44.7 | 72.2 | 145 | 262 | 283 | 293 | 316 | 340 | 366 | | | | | 50 | 41.1 | 56.2 | 93.5 | 197 | 368 | 398 | 413 | 447 | 483 | 523 | | | | | 60 | 48.9 | 67.8 | 116 | 251 | 484 | 525 | 547 | 594 | 645 | 700 | | | | | 70 | 56.6 | 79.5 | 138 | 310 | 611 | 665 | 694 | 756 | 823 | 896 | | | | | 80 | 64.3 | 91.2 | 161 | 371 | 748 | 816 | 853 | 931 | 1,016 | 1,109 | | | | | 90 | 71.9 | 103 | 185 | 435 | 893 | 977 | 1,022 | 1,118 | 1,224 | 1,339 | | | | | 100 | 79.4 | 115 | 209 | 501 | 1,047 | 1,148 | 1,202 | 1,318 | 1,445 | 1,585 | | | | The estimation of flood discharges for recurrence intervals other than those for which equations are provided requires the use of frequency curves. A frequency curve can be prepared by plotting discharges, computed by the regional equations, on a frequency graph and fitting a smooth curve through the plotted points. A frequency curve based on annual peak discharges at a gaging station will provide a reliable estimate of flood frequencies at a gaged site if the record is sufficiently long. Hardison (1971) describes a method for determining the reliability of regression estimates in terms of equivalent years of record. If a period of record is longer than the equivalent years of the regression, then the station frequency curve probably is better for estimating floods at the gage. The following table presents equivalent years of record of the regression equation in regions I-IX for selected recurrence intervals and helps the user decide whether to use the equations or the station frequency curve. The sparse coverage by gaging stations in regions X through XII, the relatively short periods of record, and the high variability of floodflows combine to give a pseudoaccuracy to the regression relation when expressed as equivalent years of record. In regions X through XII, it is suggested that the average of the discharges from the station frequency curve and from the regression equation be used. | Recurrence | | Equivalent years of record | | | | | | | | | |------------|---|----------------------------|-----|----|---|----|-----|------|----|--| | interval | | Region | | | | | | | | | | (years) | I | II | III | IV | V | VI | VII | VIII | IX | | | 50 | 7 | 5 | 5 | 5 | 5 | 8 | 5 | 5 | 5 | | | 100 | 8 | 7 | 5 | 7 | 5 | 9 | 5 | 5 | 5 | | If a station record is shorter than the equivalent years of record, the desired discharge for the 50- or 100-year flood may be obtained by comparing the values from the station curve with the appropriate equation on the basis of actual and equivalent years of record. For example: An estimate of the 50-year-flood discharge is desired at gaging station 12009500 (Bear River near Naselle). The length of record at the site is 10 years and the log-Pearson curve through annual peak discharges indicates 2,740 ft 3 /s for the 50-year flood. A computation of the equation for the 50-year-flood discharge in region II gives an estimate of 1,790 ft 3 /s. The equation is equivalent to 5 years of record. A weighted value of the 50-year-flood discharge is: $$\frac{(10)(2,740) + 5(1,790)}{15} = 2,420 \text{ ft}^3/\text{s} .$$ #### LIMITATIONS AND COMMENTS The equations presented in this study can be used within certain limitations to predict the magnitude of floods for different recurrence intervals within the State of Washington. The relationships were determined from gaging-station data for natural-flow streams and should not be applied where artificial conditions affect the hydrology or hydraulics in such a way that regionwide conditions are obviously not applicable. Extrapolations beyond the limits of the basic data used in each region is not advisable. The relationships can be used with most confidence in humid areas and in areas where they are well defined by data from numerous gaging stations, and they can be used with least confidence in arid areas and in areas--in both western and eastern Washington-for which little or no streamflow data are available or for which the periods of streamflow record are relatively short. The density of gaging-station coverage can be ascertained from plate 1 (in pocket), the characteristics at these stations are given in table 2, and the ranges are listed in table 4. Flood frequencies for arid regions probably never will be defined with the accuracy achieved for humid areas. Research is needed for future utilization of basin and climatic characteristics that may better relate flood flows and frequencies. Additional data for some areas of Washington probably would aid in defining more reliable flood-frequency estimates. There is sparse areal coverage, and streamflow records are of insufficient length, to reasonably define rare events. It is not economically feasible to establish gaging stations statewide to define flood-frequency relations of rare events in areas where benefits will not be realized. Long-term gaging stations can be continued or established in highly developed areas or in areas proposed for development, and secondary shorter term stations can be established in adjacent areas where a lesser accuracy of estimate of flood-flow is deemed to be of sufficient benefit. Some crest-stage gages in small basins may be useful as indexes for continued long-term coverage of a range in drainage-area sizes not usually gaged. The areas of statewide need for hydrologic data are more easily discernible than those subject to unanticipated development and construction or for other needs of flood-frequency data. #### REFERENCES CITED - Anderson, I. E., 1948, Floods of the Puyallup and Chehalis River basins, Washington: U.S. Geol. Survey Water-Supply Paper 968-B, p. 61-124. - Beard, L. R., 1962, Statistical methods in hydrology: U.S. Army Engineer District, Corps of Engineers, Sacramento, Calif. - Benson, 1962a, Evolution of methods for evaluating the occurrence of floods: U.S. Geol. Survey Water-Supply Paper 1580-A, 30 p. - ----1962b, Factors influencing the occurrence of floods in a humid region of diverse terrain: U.S. Geol. Survey Water-Supply Paper 1580-B, 64 p. - ----1964, Factors affecting the occurrence of floods in the Southwest: U.S. Geol. Survey Water-Supply Paper 1580-D, 72 p. - Bodhaine, G. L., and Robinson, W. H., 1952, Floods in western Washington, frequency and magnitude in relation to drainage basin characteristics: U.S. Geol. Survey Circ. 191, 124 p. - Bodhaine, G. L., and Thomas, D. M., 1960, Floods in Washington, magnitude and frequency: U.S. Geol. Survey open-file report, Tacoma, Wash., 25 p. - ----1964, Pacific slope basins in Washington and upper Columbia River basin, pt. 12 of Magnitude and frequency of floods in the United States: U.S. Geol. Survey Water-Supply Paper 1687, 337 p. - Hardison, C. H., 1971, Prediction error of regression estimates of streamflow characteristics at ungaged sites: U.S. Geol. Survey Prof. Paper 750-C, p. C228-C236. - Hulsing, H., and Kallio, N. A., 1964, Pacific slope basins in Oregon and lower Columbia River basin, pt. 14 of Magnitude and frequency of floods in the United States: U.S. Geol. Survey Water-Supply Paper 1689, 320 p. - Rantz, S. E., and Riggs, H. C., 1949, Magnitude and frequency of floods in Columbia River basin: U.S. Geol. Survey Water-Supply Paper 1080, 476 p. - Riggs, H. C., 1968a, Some statistical tools in hydrology: U.S. Geol. Survey Water Resources Inv. Techniques, book 4, ch. Al, 39 p. - ----1968b, Frequency curves: U.S. Geol. Survey Water Resources Inv. Techniques, book 4, ch. A2, 15 p. - ----1973, Regional analysis of streamflow characteristics: U.S. Geol. Survey Water Resources Inv. Techniques, book 4, ch. B3, 15 p. - Stewart, J. E., and Bodhaine, G. L., 1961, Floods in the Skagit River basin, Washington: U.S. Geol. Survey Water-Supply Paper 1527, 66 p. - Thomas, C. A., Broom, H. C., and Cummans, J. E., 1963, Snake River basin, pt. 13 of Magnitude and frequency of floods in the United States: U.S. Geol. Survey Water-Supply Paper 1688, 250 p. - [U.S.] National Oceanic and Atmospheric Administration, 1965, Climates of the States--Washington, of Climatography of the United States, no. 60-45: Washington D.C., 27 p. - [U.S.] Water Resources Council, 1967, A uniform technique for determining flood flow frequencies: U.S. Water Resources Council Bull. 15, Washington D.C., 15 p. - U.S. Weather Bureau, 1965, Mean annual precipitation, 1930-57, State of Washington: Portland, Oreg., U.S. Soil Conserv. Service, map M-4430. TABLE 1.--Discharges for selected flood frequencies,
peak of record, and years of peak record, at gaging stations in Washington | Station | | Years* | | scharge, | in cubic
currence i | feet per | | Peak di | scharge | |----------|---|----------------------|------------------------|--------------------------|--------------------------|--------------------------|----------------------------|---------------------|--------------------| | number | Station name | of peak
record | 2-yr
Q ₂ | 10-yr
^Q 10 | 25-yr
^Q 25 | 50-yr
^Q 50 | 100-yr
^Q 100 | Date | ft ³ /s | | WE | STERN WASHINGTON | | | | | | | | | | 12009500 | Bear River near Naselle | 1963-73 | 950 | 1,800 | | | | 1-25-71 | 2,450 | | 010000 | Naselle River near Naselle | 1930-73 | 5,640 | 8,320 | 9,460 | 10,300 | 11,000 | 1-22-35 | 11,100 | | 010500 | | 1954-65 | 1,640 | 4,140 | | | | 11-20-62 | 3,210 | | 010600 | | 1950-70 | 177 | 217 | 232 | 241 | | 11-20-62 | 249 | | 011000 | North Nemah River near
South Bend | 1947-61,
1965-68 | 1,400 | 1,690 | 1,880 | 2,300 | | 1-28-65 | 2,000 | | 011100 | North Nemah River tribu-
tary near South Bend | 1949-66 | 49 | 75 | 85 | 93 | | 11-19-62 | 101 | | 011500 | Willapa River at Leban | 1949-71 | 2,830 | 4,070 | 4,610 | 4,980 | | 2-22-49 | 4,930 | | 012000 | | 1954-70 | 2,230 | 3,540 | 4,310 | | | 11-20-62 | 4,400 | | 012200 | Green Creek near Lebam | 1950-69 | 124 | 196 | 239 | 274 | | 11-20-60 | 233 | | 013500 | Willapa River near Willapa | 1949-73 | 7,780 | 10,700 | 12,100 | 13,100 | | 2-22-49 | 11,400 | | 014500 | South Fork Willapa River near Raymond | 1954-71 | 1,500 | 2,500 | 3,010 | 3,410 | | 1-26-71 | 3,280 | | 015500 | North River near Brooklyn | 1954-65 | 1,700 | 2,510 | 2,830 | | | 12- 9-56 | 2,640 | | 016700 | Joe Creek near Cosmopolis | 1949-70 | 153 | 246 | 293 | 328 | | 12- 9-56 | 329 | | 017000 | North River near Raymond | 1928-73 | 7,610 | 14,600 | 20,500 | 26,500 | 34,000 | 12-10-33 | 35,000 | | 019600 | Watermill Creek near
Pe Ell | 1950-70 | 90 | 137 | 156 | 170 | | 11-19-62 | 147 | | 020000 | | 1940-73 | 9,220 | 13,800 | 16,200 | 18,000 | 19,800 | 1-20-72 | 22,800 | | 020500 | Elk Creek near Doty
South Fork Chehalis River | 1945-72
1945-65 | 1,580
3,190 | 2,490
4,550 | 2,950
5,230 | 3,290
5,730 | 3,640 | 11-20-62
2- 7-45 | 3,400
5,700 | | 024000 | | 1945-71 | 2,100 | 3,180 | 3,650 | 3, 980 | | 12-11-46 | 3,810 | | 024500 | near Onalaska
North Fork Newaukum River
near Forest | 1958-66 | 1,410 | 2,560 | | | | 1-25-64 | 2,770 | | 025000 | Newaukum River near
Chehalis | 1929-73 | 5,450 | 7,420 | 8,200 | 8,710 | 9,180 | 1-21-72 | 9,770 | | 026000 | Skookumchuck River near
Centralia | 1930-33,
1940-58, | 3,630 | 5,420 | 6,220 | 6,780 | 7,310 | 12- 9-53 | 6,710 | | 026300 | Skookumchuck River tribu-
tary near Bucoda | 1960-68
1961-73 | 35 | 51 | | | | 11-21-59 | 64 | | 027500 | Chehalis River near
Grand Mound | 1929-73 | 24,700 | 37,400 | 43,800 | 48,600 | 53,300 | 1-21-72 | 49,200 | | 030000 | Rock Creek at Cedarville | 1945-71 | 1,100 | 1,420 | 1,530 | 1,600 | 1,670 | 1-26-71 | 1,480 | | 031000 | Chehalis River at Porter | 1947-72 | 29,000 | 42,600 | 50,000 | 55,800 | 61,800 | 1-22-72 | 55,600 | | 032500 | Cloquallum Creek at Elma | 1945-72 | 2,990 | 4,490 | 5,170 | 5,660 | 6,130 | 12-15-59 | 5,080 | | | East Fork Satsop River
near Elma | 1958-71 | 2,890 | 4,360 | 5,040 | | | 1-19-68 | 5,030 | | 034700 | West Fork Satsop River
tributary near Matlock | 1958-73 | 46 | 83 | 98 | | | 1-19-68 | 77 | | 035000 | Satsop River near Satsop | 1930-73 | 22,600 | 35,600 | 41,900 | 46,500 | 51,100 | 1-22-35 | 46,600 | | 035500 | Wynoochee River at Oxbow,
near Aberdeen | 1926-52 | 9,900 | 14,500 | 16,600 | 18,000 | 19,400 | 1-22-35 | 18,000 | | 036000 | Wynoochee River above Save
Creek, near Aberdeen | 1952-73 | 12,500 | 20,800 | 25,000 | 28,200 | | 12- 9-56 | 23,600 | | 037400 | Wynoochee River above
Black Creek, near
Montesano | 1957-73 | 16,600 | 25,300 | 29,100 | | | 1-19-68 | 25,500 | | 039000 | Humptulips River near
Humptulips | 1934-73 | 18,900 | 28,600 | 33,100 | 36,200 | 39,300 | 1-22-35 | 33,000 | | 039050 | Big Creek near Hoquiam | 1949-70 | 61 | 108 | 131 | 149 | | 1-22-53 | 123 | TABLE 1.--Discharges for selected flood frequencies, peak of record, and years of peak record, at gaging stations in Washington--Continued | Station | Ghahian Tarra | Years* | | | in cubic
currence i | | | Peak di | scharge | |------------------|--|---------------------------------|------------------------|--------------------------|--------------------------|--------------------------|----------------------------|----------------------|--------------------| | number | Station name | of peak
record | 2-yr
Q ₂ | 10-yr
^Q 10 | 25-yr
^Q 25 | 50-yr
^Q 50 | 100-yr
^Q 100 | Date | ft ³ /s | | 12039100 | Big Creek tributary near | 1949-68 | 17 | 24 | 26 | 27 | | 11-22-59 | 24 | | 039400 | Hoquiam
Higley Creek near | 1955-73 | 179 | 329 | 409 | | | 12- 9-56 | 409 | | 040000 | Amanda Park
Clearwater River near | 1932-67 | 19,700 | 30,700 | 36,500 | 40,800 | 45,300 | 11- 3-55 | 37,400 | | 040500 | Clearwater
Queets River near
Clearwater | 1931-67 | 61,300 | 95,100 | 114,000 | 128,000 | 143,000 | 1-22-35 | 130,400 | | 041000 | Hoh River near Forks | 1927-64 | 18,700 | 30,600 | 37,000 | 41,800 | 46,900 | 11-26-49 | 38,700 | | 041200 | Hoh River at U.S. Highway | 1961-73 | 25,100 | 41,000 | | | | 1-15-61 | 46,000 | | 041500 | 101, near Forks Soleduck River near Fairholm | 1918-71 | 9,230 | 16,000 | 19,800 | 22,800 | 26,000 | 11-26-49 | 23,500 | | 041600 | Soleduck River tributary near Fairholm | 1956-73 | 23 | 45 | 59 | | | 12- 9-56 | 52 | | 042700 | May Creek near Forks | 1950-68 | 495 | 694 | 764 | 807 | | 11-19-62 | 759 | | | Grader Creek near Forks | 1950-73 | 311 | 481 | 566 | 629 | | 12-26-72 | 597 | | | | | | | | | | | | | | Dickey River near La Push | | 8,430 | 13,600 | | | | 1-19-68 | 17,300 | | | Hoko River near Sekiu | 1963-73 | 6,270 | 10,300 | | | | 12-25-72 | 14,100 | | 043430 | | | 859 | 1,200 | | | | 11-19-62
1-10-23 | 1,220 | | 044000
045500 | Lyre River at Piedmont
Elwa River at McDonald
Bridge, near Port
Angeles | 1918-27
1898-1901
1918-73 | 747
., 12,600 | 1,170
24,600 | 31,900 | 37,800 | | 11-18-189 | 1,180
7 41,600 | | 046800 | East Valley Creek at
Port Angeles | 1950-63 | 22 | 43 | 54 | | | 1-16-61 | 52 | | 047100 | Lees Creek at Port Angeles | 1949-70 | 92 | 238 | 343 | 436 | | 1-15-61 | 338 | | | Siebert Creek near
Port Angeles | 1953-69 | 438 | 1,310 | 1,920 | | | 11- 3-55 | 1,620 | | | Dungeness River near Sequir | | 2,700 | 5,390 | 6,760 | 7,780 | 8,780 | 11-27-49 | 6,820 | | 049400 | Dean Creek at Blyn | 1949-70 | 27 | 60 | 80 | 96 | | 2-24-57 | 108 | | 050500 | Snow Creek near Maynard | 1953-72 | 249 | 508 | 658 | 778 | | 1- 8-59 | 733 | | 052400
053000 | - | 1931-68 | 216
4,360 | 442
8,170 | 539
10,200 | 603
11,800 | 13,500 | 1- 8-59
1149 | 557
13,200 | | 053400 | Dosewallips River tribu-
tary near Brinnon | 1951-70 | 39 | 57 | 63 | 66 | | 1- 8-59 | 66 | | 054000 | Duckabush River near
Brinnon | 1939-73 | 4,370 | 6,820 | 7,970 | 8,800 | 9,600 | 11-26-49 | 8,960 | | 054500 | Hamma Hamma River near
Eldon | 1952-71 | 3,420 | 5,590 | 6,630 | 7,380 | | 1-14-68 | 6,010 | | 054600
056300 | Annas Bay tributary near | 1958-71
1950-70 | 2,370
56 | 3,160
135 | 3,390
167 | 186 | | 12-13-66
12-28-49 | 3,160
228 | | 056500 | Potlatch
North Fork Skokomish River
below Staircase Rapids, | 1925-73 | 6,110 | 12,800 | 17,400 | 21,500 | 26,100 | 11- 5-34 | 27,000 | | 057500 | near Hoodsport
North Fork Skokomish River | 1914-30 | 5,590 | 12,200 | 15,900 | 18,800 | | 1- 6-14 | 14,000 | | 060000 | South Fork Skokomish River near Potlatch | 1947-64 | 9,910 | 16,700 | 20,300 | 23,100 | | 11-26-49 | 19,300 | | 060500 | South Fork Skokomish River near Union | 1932-73 | 11,800 | 18,800 | 22,200 | 24,500 | 26,800 | 1-22-35 | 21,600 | | | Potlatch | 1955-73 | 138 | 236 | 290 | | | 12- 9-56 | 280 | | | Union River near Bremerton
Gold Creek near Bremerton | | 224
116 | 522
193 | 632
225 | 246 |
264 | 2-22-49
2-22-49 | 476
203 | TABLE 1.--Discharges for selected flood frequencies, peak of record, and years of peak record, at gaging stations in Washington--Continued | Station | Station name | Years*
of peak | | | in cubic
currence i | _ | • | Peak di | scharge | |-------------------------
--|---------------------------------|----------------|-----------------|------------------------|-----------------|------------------|---------------------|--------------------| | number | Station name | record | 2-yr | 10-yr | 25-yr | 50-yr | 100-yr | | - 3. | | | | | Q ₂ | Q ₁₀ | Q ₂₅ | Ω ₅₀ | Q ₁₀₀ | Date | ft ³ /s | | 1000000 | malaura Diagram and an | 1046 56 | 220 | 400 | | | | | | | 12066000 | Tahuya River near Bremerton | | 339
707 | 499 | | | | 11- 3-55 | 504 | | 067500
068500 | Tahuya River near Belfair
Dewatto River near Dewatto | 1946-56
1948-73 | 1,040 | 1,040
1,770 | 2,140 | 2,420 | 2,700 | 11- 3-55
1-15-61 | 1,210 | | 070000 | Dogfish Creek near Poulsbo | 1948-71 | 1,040 | 221 | 2,140 | 327 | 380 | 2-22-49 | 2,160 | | 070000 | | 1948-50. | 473 | 1,030 | 1,440 | 32/ | 380 | 2-22-49 | 333 | | 072000 | Chico Cleek hear blemercon | 1962-73 | 4,3 | 1,030 | 1,440 | | | 2-22-49 | 1,640 | | 0 73500 | Huge Creek near Wauna | 1948-69 | 124 | 291 | 407 | 509 | | 2- 9-51 | 391 | | 076500 | Goldsborough Creek near
Shelton | 1952-71 | 861 | 1,330 | 1,530 | 1,670 | | 1-19-68 | 1,430 | | 078400 | Kennedy Creek near Kamilche | 1961-71 | 719 | 1,160 | | | | 11-20-62 | 1,110 | | 0 78600 | Schneider Creek tributary
near Shelton | 1950-69 | 56 | 91 | 109 | 121 | | 12- 9-56 | 106 | | 079 000 | Deschutes River near
Rainier | 1950-73 | 3,580 | 5,320 | 6,300 | 7,080 | 7,910 | 1-20-72 | 7,420 | | 080000 | Deschutes River near
Olympia | 1946-64 | 3,840 | 5,610 | 6,400 | 6,960 | | 1-26-64 | 6,650 | | 081000 | - - | 1950-69 | 91 | 152 | 184 | 209 | | 2- 9-51 | 204 | | 081300 | Eaton Creek near Yelm | 1960-73 | 28 | 40 | | | | 3- 6-72 | 45 | | 082500 | Nisqually River near
National | 1943-73 | 5,220 | 8,750 | 10,700 | 12,100 | 13,700 | 1-29-65 | 11,000 | | 083000 | Mineral Creek near Mineral | 1943-73 | 4,830 | 7,200 | 8,130 | 8,730 | 9,270 | 1-20-72 | 9,740 | | 084000 | Nisqually River near Alder | 1932-44 | 9,780 | 17,700 | 22.500 | | - | 12-22-33 | 25,0 0 0 | | 084500 | Little Nisqually River near Alder | 1921-43 | 1,900 | 2,610 | 2,870 | 3,050 | 3,200 | 12-20-33 | 2,920 | | 087000 | Mashel River near La Grande | 1941-57 | 2,710 | 4,970 | 6,420 | 7,660 | | 12-11-46 | 7,980 | | 088000 | Ohop Creek near Eatonville | 1928-71 | 632 | 1,190 | 1,520 | 1,790 | 2,090 | 12- 9-53 | 1,740 | | 090200 | Muck Creek at Roy | 1957-72 | 386 | 603 | 663 | | | 3- 7-72 | 692 | | 0 9 04 00 | North Fork Clover Creek
near Parkland | 1960-73 | 150 | 178 | | | | 2-28-72 | 190 | | 090500 | Clover Creek near Tillicum | 1950-70 | 180 | 359 | 458 | | | 2-12-51 | 568 | | 092000 | Puyallup River near
Electron | 1945-49,
1958-73 | 3,890 | 7,720 | 10,200 | 12,300 | 14,600 | 11-22-59 | 10,800 | | 093000 | Kapowsin Creek near
Kapowsin | 1928-32,
1942-70 | 340 | 586 | 703 | 7 8 6 | 866 | 1-29-65 | 681 | | 093500 | Puyallup River near Orting | 1932-73 | 6,320 | 11,300 | 13,900 | 15,800 | 17,800 | 11-20-62 | 15,300 | | 094000 | Carbon River near Fairfax | 1930-65 | 4,060 | 7,500 | 9,330 | 10,700 | 12,200 | 12- 9-33 | 11,000 | | 095000 | South Prairie Creek at
South Prairie | 1950-71 | 2,890 | 5,210 | 6,360 | 7,200 | · | 12-11-55 | 6,850 | | 09650 0 | Puyallup River at Alderton | 1916-27,
1944-57 | 13,200 | 20,100 | 23,500 | 25,900 | 28,300 | 12-12-55 | 23,300 | | 096800 | Dry Creek near Greenwater | 1957-73 | 20 | 45 | 64 | | | 1-29-65 | 67 | | 097000 | White River at Greenwater | 193 0-73 | 4,460 | 9,390 | 12,800 | 15,700 | 19,100 | 12-21-33 | 18,100 | | 097500 | Greenwater River at
Greenwater | 1930-73 | 1,230 | 2,870 | 4,230 | 5,550 | 7,200 | 11-22-59 | 5,360 | | 097700 | Cyclone Creek near Enumclaw | 1950-72 | 138 | 304 | 442 | 576 | | 1-29-65 | a2,000 | | 100000 | | 1900-02,
1911-23,
1935-38 | 11,800 | 18,700 | 21,300 | | | 12-18-17 | 23,100 | | 102200 | Swan Creek near Tacoma | 1951-71 | 109 | 175 | 214 | 246 | | 12- 9-56 | 229 | | 102800 | South Fork Hylebos Creek
near Puyallup | 1949-66 | 5 | 6 | 7 | | | 12-11-55 | 7 | TABLE 1.--Discharges for selected flood frequencies, peak of record, and years of peak record, at gaging stations in Washington--Continued | Station | Station name | Years of peak | for indi | | in cubic
currence i | | | Peak discharge | | |---------|--|---------------------|----------------|-----------------|------------------------|-----------------|------------------|----------------------|--------------------| | number | Deacton name | record | 2-yr | 10-yr | 25-yr | 50-yr | 100-yr | Date | ft ³ /s | | | | | Q ₂ | Q ₁₀ | Q ₂₅ | Q ₅₀ | Q ₁₀₀ | | | | | To a Guarda at Managa | 1050 50 | 10 | 3.4 | 3.0 | | | 1 10 65 | | | | Joes Creek at Tacoma | 1958-73 | 10 | 14 | 16 | 3 050 | | 1-19-67 | 17 | | | Snow Creek near Lester | 1946-65 | 888
260 | 1,900
587 | 2,530
848 | 3,050
1,100 | | 11-23-59
11-22-59 | 3,400 | | | Friday Creek near Lester | 1946-73 | | 9,890 | 13,900 | | 1,410
21,900 | | 1,370 | | | Green River near Lester
Green Canyon Creek near | 1946-73
1961-70 | 4,370
152 | 268 | 13,900 | 17,600 | 21,900 | 11-22-59
1-28-65 | 22,000 | | 104700 | Lester | 1901-70 | 132 | 200 | | | | 1-20-65 | 284 | | 105000 | Smay Creek near Lester | 1948-70 | 436 | 1,010 | 1,460 | 1,880 | | 11-23-59 | 2,380 | | 105710 | North Fork Green River near Lemolo | 1957-73 | 9 59 | 1,810 | 2,300 | | | 1-28-65 | 2,370 | | 106500 | Green River near Palmer | 1932-63 | 11,600 | 20,800 | 25,700 | 29,400 | 33,200 | 11-23-59 | 27,800 | | 107200 | Deep Creek at Cumberland | 1950-70 | 68 | 108 | 119 | 124 | | 1-29-65 | 128 | | 108500 | Newaukum Creek near
Black Diamond | 1945-73 | 706 | 1,300 | 1,710 | 2,070 | 2,480 | 2-17-49 | 1,820 | | | Big Soos Creek near Auburn | 1945-56 | 643 | 1,130 | | | | 2-10-51 | 1,570 | | | Big Soos Creek above
hatchery, near Auburn | 1961-73 | 698 | 1,060 | | | | 2-28-72 | 1,090 | | | Green River near Auburn | 1937-73 | 11,800 | 20,600 | 25,000 | 28,200 | 31,400 | 11-23-59 | 28,100 | | | Mill Creek near Auburn | 1949-70 | 47 | 72 | 81 | 86 | | 2- 9-51 | 112 | | 113300 | Mill Creek tributary near
Auburn | 1959-73 | 5 | 10 | 11 | | | 1-25-64 | 15 | | 113500 | North Fork Cedar River
near Lester | 1945-63 | 837 | 1,890 | 2,660 | 3,370 | | 11-22-59 | 3,160 | | 114000 | South Fork Cedar River
near Lester | 1945-73 | 425 | 1,040 | 1,590 | 2,140 | 2,860 | 12- 9-56 | 2,340 | | 114500 | Cedar River below Bear
Creek, near Cedar Falls | 1946-63 | 1,570 | 3,480 | 5,140 | 6,800 | | 11-22-59 | 7,620 | | 115000 | Cedar River near Cedar Falls | 1946-73 | 2,720 | 5,770 | 7,720 | 9,380 | 11,200 | 11-22-59 | 9,490 | | 115300 | Green Point Creek
near Cedar Falls | 1957-73 | 62 | 124 | 159 | | | 1- 5-69 | 125 | | 115500 | Rex River near Cedar Falls | 1046-73 | 1,530 | 2,870 | 3,620 | 4 100 | 4 700 | 11-22-59 | 4 200 | | 116100 | Canyon Creek near Cedar Falls | 1946-73 | 54 | 94 | 112 | 4,190
124 | | 12-19-46 | 4,200
102 | | 117000 | Taylor Creek near Selleck | 1946-73 | 879 | 1,960 | 2,700 | | | 1-29-65 | 2,730 | | 119600 | May Creek at mouth near | 1946-71 | 220 | 343 | 406 | | | 11-30-64 | 295 | | | Renton | | | | | | | | | | 119800 | North Branch Mercer Creek
near Bellevue | 1949-71 | 33 | 74 | 120 | 173 | | 2-10-51 | 241 | | 120000 | Mercer Creek near Bellevue | 1956-73 | 204 | 248 | 266 | | == | 3- 6-72 | 402 | | | Issaquah Creek near Issaquah | 1946-64 | 638 | 1,310 | 1,820 | 2,290 | | 2- 9-51 | 2,610 | | 123000 | Cottage Lake Creek near
Redmond | 1956-65 | 79 | 134 | | | | 1- 6-56 | 132 | | 123300 | Evans Creek tributary
near Redmond | 1949-69 | 24 | 42 | 48 | 51 | | 2- 9-51 | 60 | | 124000 | Evans Creek above mouth, near Redmond | 1956-73 | 118 | 156 | 169 | | | 3- 6-72 | 211 | | 125000 | Sammamish River near
Redmond | 1940-57 | 742 | 1,240 | 1,480 | 1,660 | | 2-11-51 | 1,520 | |
126000 | North Creek near Bothell | 1946-72 | 302 | 446 | 523 | 582 | 643 | 3- 5-50 | 680 | | 126500 | Sammamish River at Bothell | 1940-63 | 1,150 | 1,680 | 1,900 | 2,050 | 2,190 | 1- 6-56 | 1,910 | | 130500 | South Fork Skykomish River near Skykomish | 1930-31,
1947-70 | 6,340 | 12,600 | 16,600 | 19,900 | 23,600 | | 20,000 | | 131000 | Beckler River near
Skykomish | 1930-33,
1947-70 | 5,520 | 10,600 | 13,600 | 16,300 | 19,100 | 12-15-59 | 17,100 | TABLE 1.--Discharges for selected flood frequencies, peak of record, and years of peak record, at gaging stations in Washington--Continued | Station | Station name | Years
of peak | | | in cubic | | | Peak dis | scharge | |----------|--|---|------------------------|--------------------------|--------------------------|--------------------------|-------------|---------------------|--------------------| | number | Station name | record | 2-yr
0 ₂ | 10-yr
0 ₁₀ | 25-yr
^Q 25 | 50-yr
^Q 50 | 100-yr
0 | Date | ft ³ /s | | 12132700 | South Fork Skykomish River
tributary at Baring | 1951-70 | 109 | 181 | 212 | 234 | | 12- 9-56 | 217 | | 133000 | South Fork Skykomish River
near Index | 1897,
1903-05, | 22,300 | 43,700 | 56,300 | 66,600 | 77,400 | 1897 | 70,000 | | 133500 | Troublesome Creek near Index | 1911-73
1930-41 | 920 | 2,020 | | | | 12- 21-33 | 2,300 | | 134000 | North Fork Skykomish River
at Index | 1911-21,
1930-48 | 13,700 | 24,700 | 30,500 | 34, 900 | | 12-21-33 | 28,400 | | 134500 | Skykomish River near
Gold Bar | 1929-73 | 3 5,500 | 67,900 | 86,000 | 100,000 | 115,000 | 12-21-33 | 88,700 | | 135000 | Wallace River at Gold Bar | 1929-33,
1947-73 | 2,090 | 3,100 | 3,600 | 3,970 | 4,340 | 1- 5-59 | 3,400 | | | Olney Creek near Gold Bar | 1947-68 | 912 | 2,100 | 3,170 | 4,260 | | 10-25-46 | 4,020 | | 137500 | | 1935-68 | 16,000 | 28,600 | 34,600 | 38,800 | 42,900 | 2- 9-51 | 34,600 | | | Woods Creek near Monroe
Middle Fork Snoqualmie
River near Tanner | 1947-71
1960-72 | 1,230
12,900 | 2,000
21,000 | 2,400 | 2,710 | 3,030 | 1-30-71
11-23-59 | 2,350
49,000 | | 141500 | Middle Fork Snoqualmie
River near North Bend | 1909-32 | 12,500 | 23,800 | 30,300 | 35,400 | | 11-23-09 | 26,700 | | 142000 | North Fork Snoqualmie River
near Snoqualmie Falls | 1930-73 | 7,140 | 12,600 | 15,500 | 17,600 | 19,800 | 2-26-32 | 15,800 | | 143000 | North Fork Snoqualmie River
near North Bend | 1908-26,
1929-38,
1961-71 | 8,050 | 13,900 | 16,600 | 18,600 | 20,500 | 11-23-09 | 15,800 | | 143300 | South Fork Snoqualmie River
tributary near North Bend | | 24 | 39 | 44 | 47 | | 11-22-59 | 44 | | 143310 | South Fork Snoqualmie River
tributary No. 9 near
North Bend | 1962-72 | 17 | 30 | | | | 1- 1-64 | 31 | | 143400 | South Fork Snoqualmie River
above Alice Creek, near
Garcia | 1961-73 | 2,560 | 5,090 | | | | 11-19-62 | 7,090 | | 144000 | South Fork Snoqualmie River
near North Bend | 1908-26,
1930-38,
1945-50,
1960-73 | 4,390 | 7,540 | 9,100 | 10,200 | | 11-22-59 | 13,000 | | 144500 | Snoqualmie River near
Snoqualmie | 1959-73 | 26,200 | 48,800 | 61,000 | | | 11-23-59 | 61,000 | | 145500 | Raging River near Fall City | | 1,790 | 2,670 | 3,120 | 3,450 | 3,780 | 2- 9-51 | 3,420 | | 146000 | Patterson Creek near
Fall City | 1948-50,
1956-71 | 223 | 348 | 428 | 498 | | 2-17-49 | 480 | | 147000 | Griffin Creek near
Carnation | 1946-70 | 391 | 730 | 937 | 1,110 | 1,300 | 1-29-65 | 1,000 | | | North Fork Tolt River near Carnation | 1968-73 | 5,000 | 8,100 | | | | 12-15-59 | 9,560 | | | South Fork Tolt River near Carnation | 1970-73 | 3,450 | 5,780 | | | | 12-15-59 | 6,500 | | | South Fork Tolt River tributary near Carnation | 1955-73 | 121 | 211 | 257 | | | 12-15-59 | 242 | | 148500 | Tolt River near Carnation | 1929,
1931,
1938-73 | 7,250 | 13,100 | 16,000 | 18,200 | 20,300 | 12-15-59 | 17,400 | | 149000 | Snoqualmie River near
Carnation | 1929-73 | 28,200 | 48,700 | 59,400 | 67,400 | 75,600 | 2-27-32 | 59,500 | | | Pilchuck River near
Granite Falls | 1944-72 | 5,170 | 7,720 | 8,870 | 9,670 | 10,400 | 10-25-45 | 11,800 | | | Little Pilchuck Creek near
Lake Stevens | 1947-51,
1953-70 | 270 | 455 | 556 | 636 | | 11-21-59 | 625 | | | Munson Creek near
Marysville | 1949-69 | 25 | 40 | 47 | 52 | | 3-21-50 | 50 | | 157000 | Quilceda Creek near
Marysville | 1947-69 | 162 | 235 | 272 | 299 | 326 | 1-29-65 | 306 | TABLE 1.--Discharges for selected flood frequencies, peak of record, and years of peak record, at gaging stations in Washington--Continued | Station | Station name | Years* | for indi | cated red | currence | feet per interval, | in years | Peak d | ischarge | |------------------|--|------------------------------|------------------------|--------------------------|--------------------------|--------------------------|----------------------------|----------------------|--------------------| | number | Station name | record | 2-yr
Q ₂ | 10-yr
0 ₁₀ | 25-yr
Q ₂₅ | 50-yr
^Q 50 | 100-yr
^Q 100 | Date | ft ³ /s | | | | | | | | | | | | | 12161000 | South Fork Stillaguamish River near Granite Falls | 1929-73 | 15,700 | 24,300 | 28,300 | 31,200 | 34,000 | 2-26-32 | 32,400 | | 162500 | | 1938-57 | 19,600 | 26,300 | 28,600 | 30,100 | | 2- 9-51 | 27,700 | | 164000 | Jim Creek near Arlington | 1938-69 | 2,790 | 4,120 | 4,700 | 5,110 | 5,500 | 12-28-49 | 4,730 | | 165000 | | 1951-69 | 2,960 | 4,720 | 5,580 | 6,220 | | 2-10-51 | 6,440 | | 166500 | Deer Creek at Oso | 1918-30 | 7,290 | 9,390 | 10,400 | | | 12-12-21 | 10,400 | | 167000 | North Fork Stillaquamish River near Arlington | 1929-73 | 20,800 | 28,700 | 31,500 | 33,200 | 34,700 | 2- 9-51 | 30,600 | | 168500 | Pilchuck Creek near Bryant | 1930-31,
1951,
1953-73 | 4,020 | 5,810 | 6,680 | 7,320 | | 1-30-71 | 6,900 | | 169500 | Fish Creek near Arlington | 1951-72 | 94 | 178 | 223 | 257 | | 12-25-67 | 245 | | 172000 | Big Beaver Creek near
Newhalem | 1941-69 | 2,390 | 4,150 | 5,110 | | | 10-22-63 | 4,420 | | 172500 | Skagit River near Newhalem | 1922,
1930- 3 9 | 14,000 | 25,200 | | | | 1221 | 33,000 | | 173500 | Ruby Creek below Panther
Creek, near Newhalem | 1949-69 | 4,670 | 7,140 | 8,450 | | | 11-27-49 | 8,640 | | 174000 | Ruby Creek near Newhalem | 1929-49 | 4,270 | 6,700 | 7,800 | 8,570 | | 5-27-48 | 9,920 | | 174500 | Creek, near Newhalem | 1920-30 | 18,900 | 35,000 | | | | 12-12-21 | 45,700 | | 175500
176000 | Thunder Creek near Newhaler
Thunder Creek near Marble-
mount | | 3,840
4,840 | 7,340
11,100 | 9,660 | 11,700 | 14,000 | 10-25-55
12-12-21 | 10,800
15,400 | | 177500 | Stetattle Creek near
Newhalem | 1934-73 | 1,830 | 3,890 | 5,410 | 6,810 | 8,460 | 11-26-49 | 8,580 | | 178100 | Newhalem Creek near
Newhalem | 1961-73 | 1,430 | 3,370 | | | | 11-20-62 | 5,600 | | 181100 | | 1961-73 | 128 | 160 | | | | 10-24-59 | 194 | | 182500 | Cascade River at
Marblemount | 1815,
1929-72 | 6,570 | 12,200 | 15,500 | 18,100 | 21,000 | 1815 | ª46,000 | | 186000 | Sauk River near Darrington | 1918-22,
1929-73 | 8,490 | 17,900 | 24,700 | 30,900 | 38,100 | 11-27-49 | 30,200 | | 187500 | Sauk River at Darrington | 1915-32 | 18.900 | 42,100 | 50 200 | | | | | | 189000 | Suiattle River near
Mansford | 1939-50 | 10,000 | 21,200 | 58,200
 | 72,300 | | 2-26-32
11-27-49 | 46,500
30,700 | | 189400 | Sauk River tributary
near Darrington | 1951-70 | 101 | 166 | 196 | 218 | | 12- 9-56 | 184 | | | Sauk River near Sauk | 1929-73 | 26,900 | 50,400 | 64,000 | 74,800 | 86 200 | 11-27-49 | 82,400 | | 196000 | Alder Creek near Hamilton | 1944-71 | 297 | 567 | 727 | 857 | | 12- 9-56 | 714 | | | Day Creek near Lyman | 1944-61 | 4,390 | 5,490 | 5,940 | 6,250 | 6,540 | 2-20-61 | 6,000 | | 197200 | Parker Creek near Lyman
East Fork Nookachamps Creek | 1951-70 | 135 | 186 | 208 | 223 | - | 12- 9-56 | 233 | | | near Big Lake | | 464 | 601 | | | | 10-21-63 | 610 | | | Carpenter Creek tributary near Mt. Vernon | 1949-70 | 34 | 66 | 83 | 97 | | 12-25-67 | 86 | | 200800 | Lake Creek near Bellingham | 1949-68 | 118 | 222 | 281 | 327 | | 2-17-49 | 250 | TABLE 1.--Discharges for selected flood frequencies, peak of record, and years of peak record, at gaging stations in Washington--Continued | | or bear 1 | Years* | Flood d | ischarge, | in cubic
currence | feet per | second, | n | | |----------------|---|------------------|------------------------|--------------------------|--------------------------|--------------------------|----------------------------|--------------------|--------------------| | Station | Station name | of peak | | | | | | Peak di | scharge | | number | | record | 2-yr
Q ₂ | 10-yr
^Q 10 | 25-yr
^Q 25 | 50-yr
^Q 50 | 100-yr
^Q 100 | Date | ft ³ /s | | 12201500 | Samish River near
Burlington | 1944-71 | 2,370 | 4,450 | 5,530 | 6,350 | 7,160 | 12-28-49 | 5,830 | | 204400 | Nooksack River tributary
near Glacier | 1956-73 | 58 | 129 | 182 | | | 11- 3-55 | 181 | | 205000 | North Fork Nooksack River
below Cascade Creek,
near Glacier | 1938-73 | 5,430 | 8,450 | 9,930 | 11,000 | 12,100 | 11-26-49 | 10,300 | | 209000 | | 1934-73 | 9,430 | 15,000 | 17,700 | 19,500 | 21,300 | 11- 3-55 | 19,300 | | 209500 | Skookum Creek near
Wickersham | 1949-69 | 1,130 | 1,860 | 2,410 | 2,920 | | 11-27-49 | 3,050 | | 210500 | Nooksack River at Deming | 1932,
1936-73 | 25,400 | 38,300 | 44,200 | 48,300 | 52,200 | 2-27-32 | 49,300 | | | Nooksack River near Lynden | 1945-67 | 29,100 | 43,400 | 49,400 | 53,400 | 57,200 | 2-10-51 | 46,200 | | | Fishtrap Creek at Lynden | 1949-70 | 354 | 496 | 557 | 599 | | 2-11-51 | 550 | | | Tenmile Creek tributary near Bellingham | 1949-67 | 25
| 46 | 57 | 65 | | 2-10-51 | 56 | | 212800 | Tenmile Creek tributary No. 2 near Bellingham | 1956-73 | 21 | 40 | 51 | | | 1-26-71 | 52 | | <u> </u> | ASTERN WASHINGTON | | | | | | | | | | 12395800 | Deer Creek near Dalkena | 1954-73 | 45 | 72 | 84 | 92 | | 3-29-60 | 78 | | 39 5900 | Davis Creek near Dalkena | 1954-73 | 91 | 142 | 170 | 192 | | 3-30-60 | 175 | | 396000 | Dalkena | 1951-73 | 543 | 941 | 1,150 | 1,310 | | 2-25-58 | 1,070 | | 396100 | Winchester Creek near
Cusick | 1954-73 | 82 | 147 | 181 | 207 | | 4-22-56 | 184 | | 396450 | Little Muddy Creek at Ione | 1954-73 | 99 | 213 | 281 | 336 | | 4-23-69 | 300 | | 396900 | Sullivan Creek above
Outlet Creek, near
Metalline Falls | 1959-72 | 931 | 1,290 | 1,470 | | | 5-26-61 | 1,480 | | | Salmo River near Salmo,
British Columbia | 1961-73 | 7,460 | 11,800 | | | | 6- 2-68 | 16,300 | | | Big Sheep Creek near
Rossland, British Columbi | 1950-73
a | 1,490 | 2,200 | 2,590 | 2,900 | | 5-12-54 | 2,700 | | 400500 | Sheep Creek near Northport | 1930-42,
1948 | 1,750 | 2,570 | 2,950 | | | 1948 | 3,070 | | 401500 | Kettle River near Ferry | 1929-73 | 11,900 | 16,500 | 18,400 | 19,700 | 21,000 | 5-29-48 | 21,200 | | 403700 | Third Creek near Curlew | 1954-73 | 9 | 17 | 19 | | | 4 0 50 | • - | | | Nancy Creek near
Kettle Falls | 1952-72 | 56 | 131 | 180 | 221 | | 4- 9-60
4-23-69 | 16
154 | | 407500 | Sheep Creek at Springdale | 1953-72 | 44 | 79 | 94 | 105 | | 4- 8-69 | 82 | | 407520 | Deer Creek near Valley | 1960-72 | 121 | 262 | | | | 3-29-60 | 425 | | 407600 | Thomason Creek near
Chewelah | 1954-73 | 6 | 10 | 14 | | | 6-15-62 | 14 | | 407700 | Chewelah Creek at Chewelah | 1957-73 | 159 | 306 | 385 | | | 3-30-60 | 355 | | 408200 | Bighorn Creek (Patchen
Creek) near Tiger | 1954-73 | 9 | 20 | 26 | 31 | | 4-22-56 | 41 | | | Little Pend Oreille River
near Colville | 1958-73 | 334 | 806 | 1,120 | | | 5-10-61 | 1,060 | | | Narcisse Creek near
Colville | 1954-73 | 27 | 60 | 82 | 102 | | 5-10-61 | 80 | | 408420 | Haller Creek near Arden | 1960-70 | 43 | 124 | | | | 3-29-60 | 148 | TABLE 1.--Discharges for selected flood frequencies, peak of record, and years of peak record, at gaging stations in Washington--Continued | Station | Station name | Years to f peak | | ischarge,
icated re | | | second,
in years | Peak d | ischarge | |---------------------------|--|------------------------------|----------------|------------------------|----------------------|-----------------|---------------------|--------------------|-----------------------| | number | bedezon name | record | 2-yr | 10-yr | 25-yr | 50-yr | 100-yr | | | | | | | Q ₂ | 010 | Q ₂₅ | Q ₅₀ | Q ₁₀₀ | Date | ft ³ /s | | | Mill Creek near Colville
Colville River at | 1940-72
1923-73 | 320
1,180 | 589
2,300 | 707
2, 780 | 786
3,100 | 859
3,390 | 4-24-69
4-23-56 | 694
3,230 | | 409500 | Kettle Falls
Hall Creek at Inchelium | 1913-29,
1948, | 446 | 1,110 | | | | 1948 | 1,770 | | 410600 | South Fork Harvey Creek | 1972-73
1954-73 | 22 | 35 | 41 | 45 | | 4-22-56 | 41 | | 410650 | near Cedonia
North Fork Harvey Creek
near Cedonia | 1954-73 | 6 | 10 | 13 | 15 | | 4-22-56 | 15 | | 423550 | Hangman Creek tributary | 1961-73 | 52 | 270 | | | | 2- 3-63 | 155 | | 423700 | near Latah
South Fork Rock Creek
tributary near Fairfield | 1962-73 | 29 | 36 | | | | 2- 4-63 | 41 | | 423900 | Stevens Creek tributary near Moran | 1954-73 | 19 | 67 | 98 | 124 | | 2- 4-63 | 125 | | | Hangman Creek at Spokane
Deer Creek near Chattaroy | 1948-73
1962-73 | 6,670
123 | 13,100
246 | 17,300 | 20,700 | 24,600 | 2- 3-63
2-17-70 | 20,600
391 | | | Mud Creek near Deer Park | 1954-73 | 12 | 22 | 26 | 29 | | 2-24-57 | 27 | | 430370 | Bigelow Gulch near Spokane Little Spokane River at | 1950,
1962-73
1929-32, | 25
1,510 | 131
2,370 | 2,590 | 2,710 |
2,790 | 6-11-50 | b1,510 | | | Dartford Little Creek at Dartford | 1947-73
1963-73 | 26 | 217 | 2,390 | 2,710 | 2,790 | 2-17-70 | 3,170 | | 433300 | Spring Creek tributary
near Reardon | 1954-73 | 45 | 92 | 111 | 122 | | 2- 3-63 | 135 | | 433580 | Hawk Creek at Davenport | 1957,
1959,
1963-73 | 338 | 1,660 | | | | 2-26-57 | c _{2,200} | | 433800 | Granite Creek near
Republic | 1954-73 | 12 | 25 | 34 | 42 | | 4-22-56 | 36 | | 437500
4379 3 0 | Nespelem River at Nespelem
East Fork Foster Creek
at Leahy | 1911-29
1959,
1963-73 | 175
67 | 485
260 | 664
 | 800 | | 4- 5-19
1-12-59 | 483
355 | | 437950 | East Fork Foster Creek
tributary near Bridgeport | 1957-73 | 28 | 228 | 500 | | | May or
June 195 | ^đ 982
7 | | 437960 | West Fork Foster Creek | 1957-73 | 59 | 327 | 694 | | | 2-26-57 | d ₇₅₆ | | 439200 | near Bridgeport Dry Creek tributary near Molson | 1958-73 | 7 | 42 | 80 | | | 3-30-63 | •47 | | 441800 | Olie Creek near Loomis | 1961-73 | . (| 01 6 | | | | 1963 | 8 | | 442000 | Toats Coulee Creek
near Loomis | 1920-26,
1948,
1957-70 | 521 | 1,690 | 2,730 | | | 5-28-48 | 6,010 | | 442500 | Similkameen River near
Nighthawk | 1911-73 | 16,600 | 27,000 | 31,400 | 34,300 | 37,000 | 6- 1-72 | 45,800 | | 443700 | Spectacle Lake tributary near Loomis | 1961-73 | •: | 5 31 | | - - | | 2-27-73 | 109 | | 444400 | Siwash Creek tributary
near Tonasket | 1957-73 | 6 | 27 | 47 | | | 1- 9-59 | 52 | | | Omak Creek tributary near Disautel | 1955-73 | 6 | 12 | 15 | | | 1962 | 13 | | | Okanogan River tributary
at Malott | 1959-73 | | 25 22 | 51 | | | 1- 9-59 | 50
89 | | 447400 | Doe Creek near Winthrop | 1957-73 | 22 | 46 | 57 | | | 6-10-72 | 7 | TABLE 1.--Discharges for selected flood frequencies, peak of record, and years of peak record, at gaging stations in Washington--Continued | Station | | Years* | | scharge, | in cubic
urrence i | feet per | second, | s Peak discharge | | | |---------------------------|--|---------------------------------|----------------|-----------------|-----------------------|-----------------|------------------|--------------------|---------------------|--| | number | Station name | of peak
record | 2-yr | 10-yr | 25-yr | 50-yr | 100-yr | Date | ft ³ /s | | | | | | Q ₂ | ⁰ 10 | ^Q 25 | Ω ₅₀ | Q ₁₀₀ | | | | | 12449500 | Methow River at Twisp | 1920-29,
1934-62 | 11,400 | 20,400 | 24,700 | 27,700 | 30,700 | 5-29-48 | 40,800 | | | 449600 | Beaver Creek below
South Fork, near Twisp | 1961-73 | 183 | 520 | | ~- | | 5-29-72 | 535 | | | 449900 | Methow River tributary near Methow | 1954-69 | . (| 01 12 | 26 | | | 10-26-55 | 18 | | | 449950 | Methow River near Pateros | 1948,
1959-73 | 12,800 | 26,700 | 37,300 | | | 5-29-48 | [£] 46,700 | | | 450500 | Methow River at Pateros | 1904-20 | 11,600 | 14,500 | 15,000 | | | 5-11-10 | 15,400 | | | 4 51000 | Stehekin River at Stehekin | 1911-15,
1927-73 | 9,280 | 13,900 | 15,800 | 17,100 | 18,300 | 5-29-48 | 18,900 | | | 451500 | Railroad Creek at Lucerne | 1911-13,
1927-57 | 1,280 | 2,330 | 2,990 | 3,550 | 4,160 | 5-28-48 | 3,900 | | | 452800 | Entiat River near
Ardenvoir | 1958-73 | 2,940 | 3,970 | 4,300 | | | 6-10-72 | 6,430 | | | 453000 | Entiat River at Entiat | 1911-25,
1952-58 | 3,450 | 5,880 | 7,060 | | | 5-29-48 | 10,800 | | | 453600 | Columbia River tributary
near Entiat | 1954-72 | .6 | 5 1.0 | 1.0 | 1. | 0 | 1956 | 1. | | | 454000
455000 | White River near Plain
Wenatchee River below
Wenatchee Lake | 1955-73
1932-58 | 4,900
6,990 | 5,700
10,000 | 5,930
11,200 | 11,900 | 12,600 | 5-26-58
5-29-48 | 5,780
13,700 | | | 456500 | Chiwawa River near Plain | 1911-14,
1937-49,
1955-57 | 3,000 | 4,820 | 5,640 | | ~- | 5-29-48 | 5,880 | | | 457000
457 3 00 | Wenatchee River at Plain
Skinney Creek at Winton | 1911-73
1954-73 | 11,700
28 | 16,800
51 | 18,900
63 | 20,200
73 | 21,500 | 5-29-48
4-22-56 | 22,700
75 | | | 458000 | Icicle Creek above Snow Creek, near Leavenworth | 1937-71 | 4,380 | 7,080 | 8,470 | 9,520 | 10,600 | 5-28-48 | 11,600 | | | 458900 | Posey Canyon near Leavenworth | 1954-73 | 3 | 7 | 9 | 10 | | 3-18-72 | 11 | | | 459000 | Wenatchee River at
Peshastin | 1929-73 | 16,300 | 22,600 | 25,000 | 26,500 | 27,800 | 5-28-48 | 32,300 | | | 459400 | | 1960-73 | 22 | 36 | | | | 11-22-59 | 107 | | | 461000 | Wenatchee River at Dryden | 1905-06,
1910-17,
1948 | 18,100 | 29,100 | | | | 1948 | 34,600 | | | 461100 | East Branch Mission Creek near Cashmere | 1955-73 | 19 | 43 | 58 | | | 3-13-72 | 75 | | | 461200 | East Branch Mission Creek
tributary near Cashmere | 1955-73 | 6 | 13 | 17 | | | 5- 8-72 | 30 | | | 461400 | Mission Creek above Sand
Creek near Cashmere | 1959-71 | 127 | 227 | 288 | | | 1-31-71 | 299 | | | | Sand Creek near Cashmere | 1954-73 | 57 | 144 | 218 | 291 | | 8-15-56 | 325 | | | 462000 | Mission Creek at Cashmere | 1948,
1954-73 | 167 | 336 | 468 | 594 | | 3-13-72 | 560 | | | | Moses Creek at Waterville | 1954-73 | 9 | 149 | 268 | 369 | | 3-20-60 | 117 | | | | Moses Creek at Douglas | 1955-73 | 44 | 269 | 436 | 573 | | 3-18-57 | 257 | | | 463000
463600 | Douglas Creek at Waterville
Rattlesnake Creek tributary
near Soap Lake | | 588
6 | 4,060
50 | 6,240
119 | | | 6-10-48
2- 9-62 | 6,420
129 | | | 463700 | McCarteney Creek tributary
near Farmer | 1960-73 | 3 | 22 | 35 | | | 360 | 41 | | TABLE 1.--Discharges for selected flood frequencies, peak of record, and years of peak record, at gaging stations in Washington--Continued | | | Von-# | | | in cubic | | | | | |---------------------------|--|------------------------------------|------------------------|--------------------------|--------------------------|--------------------------|----------------------------
---------------------|--------------------| | Station | Station name | Years*
of peak | | | currence | | | Peak di | scharge | | number | • | record | 2-yr
Q ₂ | 10-yr
^Q 10 | 25-yr
^Q 25 | 50-yr
^Q 50 | 100-yr
Q ₁₀₀ | Date | ft ³ /s | | | | | - | | | | 100 | | | | 12463800 | Pine Canyon tributary
near Farmer | 1960-73 | 0.2 | 14 | 27 | | | 1-19-73 | 30 | | 464600 | | 1955-73 | 8 | 38 | 55 | 68 | | 3-23-56,
3-18-57 | 942 | | 464650 | - | 1954-73 | 18 | 53 | 83 | 112 | | 2-26-57 | 111 | | 465000 | Crab Creek at Irby | 1943-73 | 1,130 | 4,980 | 8,120 | 11,000 | 14,200 | 2-27-57 | 8,370 | | 465100 | Connawai Creek tributary
near Govan | 1958-73 | 5 | 47 | 110 | | | 8-25-58 | h ₁₆₅ | | 465300 | Broadax Draw tributary
near Wilbur | 1955-73 | 27 | 107 | 163 | | | 7-26-55 | i ₂₀₅ | | 465500 | Wilson Creek at Wilson
Creek | 1951-73 | 756 | 4,600 | 7,940 | 11,300 | | 2-26-57 | 12,900 | | 467000 | Crab Creek near Moses Lake | 1943-73 | 474 | 3,950 | 6,730 | 9,030 | 11,400 | 2-28-57 | 10,400 | | 467400 | Coulee City | 1959-73 | 13 | 79 | | | | 1-12-59 | 154 | | 468500 | Park Creek below Park Lake,
near Coulee City | 1946-68 | 25 | 37 | 41 | 44 | 47 | 2- 9-51 | 47 | | ⁷ 0 300 | Iron Springs Creek near Winchester | 1959-73 | 18 | 76 | 118 | | | 1-24-59 | 127 | | `1100 | Paha Coulee tributary
near Ritzville | 1962-73 | 118 | 301 | | | | 1-16-71 | 264 | | 471200 | Lind Coulee tributary
near Lind | 1956-73 | 2 | 16 | 25 | | | 2-21-56 | 60 | | 471300 | Weber Coulee tributary
near Ruff | 1959-72 | 1 | 63 | 216 | | | 1-16-71 | 239 | | 473700 | Kansas No. 2 near
Cunningham | 1955-70 | .01 | 58 | 255 | | | 2-21-56 | 175 | | 480500 | Teanaway River near
Cle Elum | 1910,
1911,
1914,
1947-52 | 2,900 | 4,310 | | | | 3-20-10 | 4,330 | | 480700 | Hovey Creek near Cle Elum | 1955-73 | 31 | 48 | 53 | | | 5-20-56 | 6 8 | | 483300 | South Fork Manastash
Creek tributary near
Ellensburg | 1955-73 | 33 | 60 | 69 | | | 5-10-57 | 100 | | 483800 | Naneum Creek near
Ellensburg | 1957-71,
1973 | 397 | 728 | 918 | | | 6- 9-64 | 968 | | 484200 | Johnson Canyon tributary
near Kittitas | 1956-73 | 1 | 25 | 57 | | | 3-23-56 | J43 | | 484600 | McPherson Canyon at Wymer | 1952-73 | 35 | 182 | 245 | 282 | | 8-10-52 | k304 | | | Selah Creek tributary
near Yakima | 1955-73 | .2 | 40 | 93 | 149 | | 1-16-71 | 1101 | | | Pine Canyon near Naches | 1961-73 | 11 | 61 | | | | 2- 3-63 | 137 | | | American River tributary near Nile | 1955-73 | 17 | 27 | 31 | | | 5-31-56 | 36 | | 488500 | American River near Nile | 1909,
1940-73 | 1,420 | 2,210 | 2,550 | 2,790 | 3,010 | 6- 2-68 | 2,840 | | 491700 | Hause Creek near Rimrock | 1955-73 | 22 | 41 | 50 | | | 2-28-72 | 59 | | | Tieton River near Naches | 1908-24,
1933 | 2,450 | 4,530 | 5,690 | | | 12-22-33 | 8,910 | | 500400 | Firewater Canyon near
Moxee City | 1963-73 | 11 | 166 | | | | 1-16-71 | 550 | | 500500 | North Fork Ahtanum Creek
near Tampico | 1908,
1910-21,
1932-73 | 384 | 625 | 7 37 | 817 | 894 | 5-20-56 | 823 | | 501000 | South Fork Ahtanum Creek
at Conrad Ranch, near
Tampico | 1915-24,
1931-73 | 95 | 213 | 291 | 358 | 432 | 12-23-33 | 424 | TABLE 1.--Discharges for selected flood frequencies, peak of record, and years of peak record, at gaging stations in Washington--Continued | Station | | Years* | | charge, | in cubic | feet per second,
interval, in years | | Peak di | scharge | |------------------|---|---------------------------------|----------------|-----------------|-----------------|--|------------------|--------------------|--------------------| | number | Station name | of peak
record | 2-yr | 10-yr | 25-yr | 50-yr | 100-yr | | | | | | | Q ₂ | Q ₁₀ | Q ₂₅ | Q ₅₀ | Q ₁₀₀ | Date | ft ³ /s | | 12502000 | Ahtanum Creek at The
Narrows, near Tampico | 1909-13,
1961-68 | 603 | 1,240 | | | | 3- 1-10 | 1,900 | | 502500 | Ahtanum Creek at Union Gap | 1910,
1961-73 | 425 | 856 | | | | 3- 3-10 | 1,530 | | 506000 | Toppenish Creek near
Fort Simco | 1910-24 | 734 | 1,510 | 1,970 | | | 5- 4-16 | 1,680 | | 506500 | Simcoe Creek near Fort Simcoe | 1909-23 | 243 | 845 | 1,320 | | | 3- 1-10 | 1,750 | | 507300 | Toppenish Creek tributary
near Toppenish | 1955-73 | 1 | 31 | 34 | 34 | | 12-21-55 | 33 | | 507600 | Shinando Creek tributary near Goldendale | 1955-73 | 3 | 12 | 20 | 27 | | 12-22-64 | 21 | | 507660 | Satus Creek tributary
near Toppenish | 1953,
1956, | 182 | 821 | | | | 12-21-55 | 955 | | 508500 | Satus Creek below Dry
Creek, near Toppenish | 1961-73
1914-24 | 1,500 | 3,450 | | | | 12-22-15 | 3,870 | | 508800 | Yakima River tributary
near Sunnyside | 1954-73 | .01 | 1 95 | 184 | 267 | | 8-20-54 | 264 | | 510600 | Webber Canyon near Kiona | 1955-73 | .01 | 1 110 | 381 | 745 | | 1-12-69 | m 209 | | 510700 | Yakima River tributary
near Kiona | 1955-73 | .01 | 1 2 | 2 | 2 | | 1-30-65
2-12-69 | 2 | | 512500 | Providence Coulee at
Cunningham | 1953-73 | .01 | L 790 | 1,640 | 2,520 | | 2-21-56 | 2,160 | | 512600 | Hatton Coulee tributary No. 2 near Cunningham | 1961-73 | 9 | 87 | | | | 1-23-70 | ⁿ 86 | | 512700 | Hatton Coulee tributary near Hatton | 1956-73 | 5 | 64 | 151 | | | 2-21-56 | 186 | | | Esquatzel Coulee at Connell
Dunnigan Coulee near | 1956, | .01
.8 | 2,490
261 | 5,510 | 8,160
 | | 2-21-56
2-21-56 | 5,560
0465 | | 513500 | Connell Esquatzel Coulee at Eltopia | 1963-73
1953-73 | .01 | ь воо | •2,920 | 5,040 | | 2-22-56 | 3,740 | | 13334500 | Asotin Creek near Asotin | 1904,
1929-59 | 328 | 688 | 921 | 1,120 | 1,340 | 4-15-04 | 1,180 | | 334700 | Asotin Creek below Kearney
Gulch, near Asotin | 1960-73 | 356 | 1,410 | | | | 12-23-64 | 2,720 | | 335200 | Critchfield Draw near
Clarkston | 1959-73 | 16 | 324 | 994 | | | 6- 5-64 | 705 | | 343520
343620 | | 1961-73 | 92 | 264 | | | | 2- 3-63 | P ₂₉₈ | | | tributary near Pataha | 1961-73 | 21 | 176 | | | | 9-13-66 | 192 | | 343660 | Smith Gulch tributary
near Pataha | 1955-73 | 50 | 307 | 542 | 776 | | 9-13-66 | q ₆₅₆ | | 344500 | Tucannon River near
Starbuck | 1915-17,
1929-31,
1959-73 | 1,870 | 6,070 | 9,250 | | | 12-22-64 | 7,980 | | 346100 | Palouse River at Colfax | 1956-73 | 4,470 | 7,520 | 8,920 | | | 12-22-64 | 8,510 | | | South Fork Palouse River at Pullman | 1935-42,
1948, | 858 | 1,720 | 2,260 | | | 2-26-48 | 5,000 | | 348400 | Missouri Flat Creek
tributary near Pullman | 1960-73
1955-73 | 30 | 115 | 206 | | | 2- 3-63 | 234 | | 348500 | Missouri Flat Creek at
Pullman | 1934-40,
1948,
1960-73 | 374 | 864 | | | | 2-26-48 | 1,500 | | 349210 | Palouse River below South Fork, at Colfax | 1963-73 | 6,440 | 13,900 | | | | 1-21-72 | 14,700 | | 349300 | Palouse River tributary at Colfax | 1955-73 | 25 | 90 | 148 | | | 9-23-63 | 183 | | 349350 | Hardman Draw tributary
at Plaza | 1955-73 | 27 | 216 | 677 | . | | 5-14-57 | r 1,780 | | 349400 | Pine Creek at Pine City | 1962-73 | 1,430 | 5,430 | | | | 2- 3-63 | 10,600 | TABLE 1.--Discharges for selected flood frequencies, peak of record, and years of peak record, at gaging stations in Washington--Continued | Station | Station name | Years*
of peak | | | | feet per
interval, | | Peak di | Peak discharge | | |------------------|--|---|------------------------|--------------------------|--------------------------|--------------------------|----------------------------|---------------------|------------------------------|--| | number | Station name | record | 2-yr
Q ₂ | 10-yr
^Q 10 | 25-yr
^Q 25 | 50-yr
^Q 50 | 100-yr
^Q 100 | Date | ft ³ /s | | | 13350500 | Union Flat Creek near | 1954-71 | 798 | 2,040 | 3,000 | 3,890 | | 1-29-65 | 2,930 | | | 351000 | Colfax
Palouse River at Hooper | 1898,1899,
1901-07,
1909-16,
1951-73 | 8,270 | 20,300 | 26,900 | 31,900 | 36,900 | 2- 4-63 | 33,500 | | | 352200 | Cow Creek tributary near
Ritzville | 1951,
1951,
1955-73 | 22 | 113 | 194 | 273 | | 3-18-51 | 200 | | | 352550 | | 1958-73 | 16 | 122 | 271 | | | 2- 4-63 | 277 | | | 353050 | Smith Canyon tributary near Connell | 1955-73 | .1 | . 26 | 47 | | | 2-21-56 | 8 46 | | | 14013000 | Mill Creek near Walla
Walla | 1914-17,
1940-73 | 829 | 1,850 | 2,620 | 3,330 | 4,180 | 12-23-64 | 3,240 | | | 013500 | Blue Creek near
Walla Walla | 1940-71 | 318 | 613 | 752 | 850 | 942 | 1- 6-69 | 1,320 | | | 015900 | | 1955-73 | 17 | 100 | 207 | | | 12- 5-71 | 228 | | | 016000
016500 | | 1949-67
1956-68 | 604
818 | 1,670
2,080 | 2,360
3,160 | | | 2-22-49
12-23-64 | 3,340
5,450 | | | 016600 | | 1955-73 | 67 | 243 | 364 | 465 | | 1-19-71 | 253 | | | 016650
017000 | Davis Hollow near Dayton
Touchet River at Bolles | 1956-73
1925-29, | . 10
2,610 | 144
5,630 | 382
7,560 | 9,180 | 11,000 | 5- 9-56
12-23-64 | 305
9,350 | | | 017040 | Thorn Hollow near Dayton | 1952-73
1962-73 | 32 | 213 | | | | 12-22-64 | 218 | | | 017070 | East Fork McKay Creek
near Huntsville | 1963-73 | 51 | 515 | | | | 2- 4-63 | [°] . 733 | | | 017200
017500 | Badger Hollow near Clyde
Touchet River near Touchet | 1955-73
1941-59,
1965 | 46
3,480 | 392
7,870 | 799
10,700 | 1,260
13,100 | | 12-23-64
2-10-49 | ^t 1,560
13,300 | | | 018500 | Walla Walla River
near Touchet | 1952-73 | 6,300 | 17,400 | 27,000 | 36,400 | | 12-22-64 | 33,400 | | | 019100 | Walla Walla River tribu-
tary near Wallula | 1955-73 | .6 | 12 | 67 | 255 | | 12-22-64 | 320 | | | 034250 | Glade Creek tributary
near Bickleton | 1961-73 | 8 | 30 | ~~ | | | 2- 3- 63 | 43 | | | 034270 | East Branch Glade Creek
near Prosser | 1962-73 | .0 | 1 477 | | | | 1-29-65 | 478 | |
| 034320 | Dead Canyon tributary
near Alderdale | 1955-73 | .0 | 1 7 | 16 | 22 | | 12-22-64 | 17 | | | | Alder Creek near Bickleton
Klickitat River above | 1963-73
19 4 5-73 | 196
1,750 | 746
2,670 | 3,220 | 3,670 | 4,150 | 12-22-64
5-27-48 | 973
3,280 | | | 110000 | West Fork, near Glenwood
Klickitat River near
Glenwood | 1910-71 | 3,07 0 | 4,960 | 5,990 | 6,780 | 7,600 | 12-22-33 | 9,870 | | | 111800 | West Prong Little Klickitat River near Goldendale | 1961-73 | 91 | 298 | | | | 12-22-64 | 569 | | | 112000 | Little Klickitat River near
Goldendale | 1911-12,
1947-51,
1958-70 | 936 | 2,590 | 3,900 | | | 12-22-64 | 5,200 | | | 112200 | Little Klickitat River
tributary near Goldendale | 1960-73 | 23 | 126 | | | | 12-22-64 | 229 | | | 112500 | Little Klickitat River
near Wahkiacus | 1945-73 | 3,120 | 8,100 | 10,900 | 12,900 | 15,000 | 12-23-64 | 17,300 | | | 113000 | Klickitat River near Pitt | 1910-11,
1929-73 | 7,880 | 17,600 | 23,700 | 28,900 | 34,400 | 12-23-64 | 31,100 | | TABLE 1.--Discharges for selected flood frequencies, peak of record, and years of peak record, at gaging stations in Washington--Continued | Station | Station name | Years* | | | | feet per
interval, | | Peak d: | ischarge | |------------------|--|---------------------------------|------------------------|--------------------------|--------------------------|--------------------------|----------------------------|----------------------|--------------------| | number | Station name | of peak
record | 2-yr
Q ₂ | 10-yr
^Q 10 | 25-yr
Q ₂₅ | 50-yr
Q ₅₀ | 100-yr
^Q 100 | Date | ft ³ /s | | | | | | | | 30 | 100 | | | | 14121300 | White Salmon River below
Cascade Creek, near
Trout Lake | 1958-73 | 573 | 761 | 838 | | | 12-23-64 | 1,070 | | 121400 | White Salmon River above Trout Lake Creek, near Trout Lake | 1960-69 | 758 | 1,040 | | | | 12-23-64 | 1,080 | | 121500 | Trout Lake Creek near Trout Lake | 1910-11,
1960-69 | 1,580 | 2,620 | | | | 12-23-64 | 2,000 | | 122000 | White Salmon River near
Trout Lake | 1929-31,
1958-67 | 1,950 | 3,400 | | | | 11-20-62 | 3,860 | | 123000 | White Salmon River
at Husum | 1909-19,
1929-41,
1957-62 | 2,750 | 5,560 | 7,610 | | | 12-22-33 | 10,800 | | 123500 | White Salmon River
near Underwood | 1916-30, | 4,640 | 7,410 | 8,590 | 9,400 | 10,100 | 12-29-17 | 9,700 | | 124500 | Little White Salmon River
at Willard | 1936-73
1945-61 | 2,810 | 3,740 | 4,100 | | | 12-15-46 | 4,140 | | 125000 | Little White Salmon River
near Willard | 1950-63 | 2,480 | 3,620 | 4,270 | | | 11-24-60 | 4,330 | | 125200 | Rock Creek near Willard | 1949-68 | 188 | 348 | 450 | 537 | | 12-22-64 | 491 | | | Little White Salmon River
near Cook | 1957-73 | 2,950 | 6,160 | 8,700 | | | 1-21-72 | 9,250 | | 126300 | Columbia River tributary at Home Valley | 1950-70 | 44 | 75 | 91 | 104 | | 12-23-64 | 103 | | 127000 | Wind River above Trout
Creek, near Carson | 1945-69 | 5,260 | 7,760 | 8,880 | 9,680 | | 2- 8-45 | 8,880 | | 128500 | Wind River near Carson | 1935-73 | 13,200 | 21,100 | 24,700 | 27,200 | 29,700 | 1-20-72 | 31,400 | | 143200 | Canyon Creek near
Washougal | 1949-70 | 125 | 222 | 283 | 336 | | 2-17-49 | 281 | | 143500 | Washougal River near
Washougal | 1945-73 | 13,300 | 17,900 | 20,000 | 21,400 | 22,800 | 1-20-72 | 22,600 | | 144000 | Little Washougal River
near Washougal | 1951-68 | 1,250 | 2,020 | 2,410 | | | 12-22-64 | 2,430 | | 144550 | Shanghai Creek near
Hockinson | 1950-70 | 76 | 127 | 151 | 168 | | 1-25-64 | 127 | | 144600
211900 | Groeneveld Creek near Camas
Burntbridge Creek at | 1958-73
1949-71 | 41
81 | 70
13 1 | 88
148 | 158 | | 12-22-64
12-11-55 | 103
176 | | 212000 | Vancouver
Salmon Creek near | 1944-73 | 872 | 1,340 | 1,520 | 1,650 | 1,760 | 1-22-54 | 1,500 | | | Battleground | | | · | • | ., | 2,,,, | | 2,200 | | 213200 | Lewis River near Trout Lake | 1959-72 | 5,640 | 9,650 | 13,300 | | | 1-20-72 | 15,600 | | | Big Creek below Skookum
Meadow, near Trout Lake | 1929-31,
1956-70 | 501 | 844 | 1,020 | | | 12-23-64 | 1,070 | | 214000 | Rush Creek above Meadow
Creek, near Trout Lake | 1956-65 | 479 | 940 | | | | 11-20-62 | 1,180 | | 214500 | Meadow Creek below Lone
Butte Meadow, near
Trout Lake | 1929-31,
1956-65 | 272 | 450 | | | : | 11-20-62 | 528 | | 215000 | Rush Creek above falls,
near Cougar | 1928-31,
1956-62,
1964-73 | 698 | 1,030 | | | - - : | 12-21-72 | 2,750 | | | Curly Creek near Cougar
Lewis River above Muddy
River, near Cougar | 1956-70
1928-34,
1955-70 | 359
9,030 | 911
16,800 | 1,440
21,600 | | | 11-20-62
12-21-33 | 1,880
27,000 | | 216500 | Muddy River below Clear
Creek, near Cougar | 1928-32,
1934,
1955-73 | 5,570 | 9,970 | 12,800 | 15,200 | 1 | 12-21-33 | 17,500 | | | Pine Creek near Cougar
Lewis River near Cougar | 1958-70
1925-58 | 971
18, 9 00 | 1,590
34,300 | 1,930
42,900 |
49,700 | 56,800 | ll-20-62
l2-21-33 | 1,840
54,400 | TABLE 1.--Discharges for selected flood frequencies, peak of record, and years of peak record, at gaging stations in Washington--Continued | Station | Chatian mana | Years * | | | in cubic | _ | | Peak d | ischarge | |------------------|--|--|------------------------|--------------------------|--------------------------|--------------------------|----------------------------|--|-----------------------| | number | Station name | of peak
record | 2-yr
Q ₂ | 10-yr
^Q 10 | 25-yr
^Q 25 | 50-yr
^Q 50 | 100-yr
^Q 100 | Date | ft ³ /s | | | | | -2 | -10 | -25 | -50 | -100 | | /8 | | 14210200 | Dog Creek at Cougar | 1956-73 | 297 | 453 | 534 | | | 1-20-72 | 724 | | | Canyon Creek near Amboy | 1923-34 | 5,860 | 10,500 | | | | 12-21-33 | 72 4
11,700 | | | Lewis River near Amboy | 1912-31 | 34,200 | 61,300 | 73,900 | 82,800 | | 12-18-17 | 79,300 | | | Speelyai Creek near Cougar | 1960-73 | 1,550 | 2,620 | 3,300 | · | | 11-20-62 | 3,600 | | | Cedar Creek near Ariel | 1952-55, | 1,510 | 2,200 | | | | 11-20-62 | 2,230 | | | | 1962-69 | | | | | | | | | 222500 | East Fork Lewis River
near Heisson | 1930-73 | 9,100 | 13,700 | 16,000 | 17,800 | 19,500 | 1-20-72 | 19,200 | | 222700 | East Fork Lewis River
tributary near
Woodland | 1950-67 | 35 | 88 | 133 | 177 | | 12-11-55 | 192 | | 223000 | Kalama River near Kalama | 1912,
1913, | 7,310 | 14,500 | 21,000 | | | 11-25-27 | 13,200 | | 223500 | Kalama River below Italian | 1917-32
1947-73 | 9,790 | 13,800 | 16,100 | 17,800 | 19,600 | 1-20-72 | 17,900 | | 223800 | Creek, near Kalama
Columbia River tributary
at Carrolls | 1950-70 | 51 | 82 | 99 | 113 | | 12-11-55 | 112 | | 224500 | Clear Fork Cowlitz River
near Packwood | 1908-17,
1931-41 | 1,600 | 3,640 | ~- | | | 12-22-33 | 8,030 | | 225500 | Lake Creek near Packwood | 1912-17,
1919-24, | 421 | 795 | | | | 12-22-33 | 1,400 | | | | 1931-42,
1950-54,
1960-73 | | | | | | | | | 226500 | Cowlitz River at Packwood | 1912-19,
1930-73 | 12,600 | 23,200 | 29,800 | 35,300 | 41,300 | 12-21-33 | 36,000 | | 226800 | Skate Creek tributary near Packwood | 1959-73 | 53 | 104 | 139 | | | 11-22-59 | 130 | | 226900 | Skate Creek tributary
No. 2 near Packwood | 1959-73 | 97 | 156 | 184 | | | 11-22-59 | 167 | | 230000 | Johnson Creek near
Packwood | 1908-13,
1919-21,
1923,1924
1947,1948 | | 2,610 | | | | 12-11-46 | 2,990 | | 231100 | Mill Creek at Randle | 1950-70 | 88 | 114 | 118 | 120 | | 11-20-59 | 133 | | 232000 | Niggerhead Creek near
Randle | 1954-63 | 2,400 | 3,560 | | | | 1-12-53 | 4,150 | | 232500 | Cispus River near Randle | 1911,
1930-41,
1943-73 | 7,370 | 11,700 | 13,200 | 14,100 | 14,900 | 12-22-33 | 20,000 | | 233500 | Cowlitz River near Kosmos | 1949-68 | 25,700 | 38,600 | 46,200 | 52,300 | | 11-24-59 | 47,500 | | 235000 | Cowlitz River at Mossyrock | 1913-17,
1927-32,
1934-35,
1948-60 | 26,600 | 46,900 | 61,700 | 75,20 0 | 91,100 | 12-23-33 | 83,500 | | | Tilton River near Mineral
West Fork Tilton River
near Morton | 1950-70
1951-71 | 86
2,040 | 123
3,600 | 138
4,650 | 148
5,570 | | 12-11-55
12-11-55 | 142
6,620 | | 236200 | Tilton River above Bear | 1957-73 | 10,700 | 17,500 | 20,700 | | | 1-20-72 | 17,600 | | 236500 | Canyon Creek, near Cinebar
Tilton River near Cinebar | 1942-59 | 10,800 | 18,300 | 22,600 | 26,100 | ~- | 12-11-55 | 23,200 | | | Klickitat Creek at Mossyrock
Winston Creek near
Silver Creek | k 1949-72
1950-70 | 104
1,170 | 159
2,170 | 181
2,820 | 195
3,390 | 208 | 1-25-64
12- 9-53 | 170
3,510 | | 238000 | Cowlitz River below
Mayfield Dam | 1935-73 | 32,400 | 49,200 | 57,700 | 64,100 | 70,600 | 12-13-46 | ^u 67,000 | | 239000
239100 | - | 1962-71
1950-69 | 3,480
24 | 6,480
34 | 38 | 41 | | 1-25-64
12-11-55
1-25-64
12-22-64 | 7,480
34 | TABLE 1.--Discharges for selected flood frequencies, peak of record, and years of peak record, at gaging stations in Washington--Continued | tation | | Years * | | | | feet per
interval, | second,
in years | Peak di | scharge | |-------------------------|---|---------------------------------|------------------------|--------------------------|--------------------------|--------------------------|----------------------------|--------------------|--------------------| | ımber | Station name | of peak
record | 2-yr
Q ₂ | 10-yr
Q ₁₀ | 25-yr
Q ₂₅ | 50-yr
^Q 50 | 100-yr
^Q 100 | Date | ft ³ /s | | 4239700 | Olequa Creek near Winlock | 1950-69 | 22 | 37 | 45 | 52 | | 1-25-64 | 47 | | 241500 | South
Fork Toutle River near Toutle | 1940-57 | 6,150 | 9,660 | 11,900 | 13,700 | | 12- 9-53 | 14,300 | | 242500 | Toutle River near 1910
Silver Lake | ,1912,1921,
1923,
1930-73 | 16,100 | 25,000 | 30,000 | 34,100 | 38,400 | 1-20-72 | 38,000 | | 242600 | Toutle River tributary
near Castle Rock | 1950-70 | 39 | 78 | 101 | 120 | | 2- 3-63
1-25-64 | 99 | | 243000 | Cowlitz River at Castle
Rock | 1928-73 | 51,300 | 79,500 | 93,500 | 104,000 | 114,000 | 12-23-33 | 139,000 | | 243 500 | Delameter Creek near
Castle Rock | 1950-69 | 1,260 | 2,120 | 2,580 | 2,930 | | 1-19-62 | 2,420 | | 245000 | Coweman River near Kelso | 1951-73 | 4,660 | 7,320 | 8,900 | 10.200 | . | 11-20-62 | 9,720 | | 247500 | Elochoman River near
Cathlamet | 1941-71 | 4,860 | 7,040 | 7,980 | 8,620 | 9,230 | 11-20-62 | u8,530 | | 248100 | Risk Creek near Skamokawa | 1949-70 | 79 | 146 | 177 | 200 | | 11-22-59 | 151 | | 249000 | Grays River above South
Fork, near Grays River | 1956-73 | 5,430 | 7,870 | 8,880 | 9,550 | 10,200 | 1-20-72 | 9,280 | | 2 5 0 500 | West Fork Grays River near
Grays River | 1950-69 | 2,400 | 3,840 | 4,660 | 5,310 | | 11-19-62 | 4,770 | ^{*}Water years, which include period of October 1 through following September 30. Approximately. bprobably the largest flood since at least 1916, reported by resident. ^CFirst or second largest flood since 1910, reported by resident. $^{^{}m d}$ Probably the largest flood since at least 1914, reported by resident. ^eHigh floods occurred in 1948, 1950, 1957. Information from residents indicates the 1950 flood may have een in excess of a thousand cubic feet per second. fMaximum flow since 1920, reported by resident. gpossibly highest peak since 1943, as reported by resident. hHighest peak since 1932, and possibly since 1914, reported by resident. iHighest peak since at least 1946, reported by resident. Possibly highest peak since 1945, reported by resident. $^{^{\}mathbf{k}}$ Possibly highest peak since at least 1934, reported by resident. Highest peak since at least 1952, reported by resident. MLargest flood since 1949, as reported by resident. ⁿA flood in 1956 is estimated as 380 ft³/s. OSecond largest flood since at least 1928, as reported by resident. PFlood of August 24, 1954 was 1,600 ft³/s at site 1 mile downstream. Largest flood since 1951, as reported by resident. rReported largest flood in 65 years by resident. Reported largest flood since 1917 by resident. Reported largest flood since 1932 by resident. ^uFlood in December 1933 was larger. TABLE 2.--Indices for basin and climatic characteristics used in multiple regressions | | | | | | | ~~~~~ | | | | | |-------------------|------------------------|---------------------------------|---------------------------------------|------------------------------------|---|-------------------------------|--------------------------|------------------------|---------------------------------|------------------------| | Station
number | Drainage area (mi^2) | Mean basin
elevation
(ft) | Forest cover
(percent of
basin) | Annual precipi-
tation (inches) | Minimum mean
daily January
temperature (°F) | Main channel
slope (ft/mi) | Percent area
of lakes | Channel
length (mi) | Stream source
elevation (ft) | Gage elevation
(ft) | | | A | E | F | P. | T | SLP | LK | L | SE | GE | | | | | | | | | | | | | | 12009500 | 11.7 | 546 | 96 | 87 | 30 | 58 | 0.01 | 8.5 | 800 | 15 | | 010000 | 54.8 | 910 | 77 | 109 | 30 | 42 | .01 | 20.5 | 2,650 | 24 | | 010500 | 16.4 | 480 | 93 | 99 | 31 | 43 | .01 | 15.5 | 2,150 | 80 | | 010600 | 2.15 | 750 | 90 | 110 | 31 | 435 | .01 | 3.7 | 1,780 | 24 | | 011000 | 18 | 689 | 97 | 110 | 31 | 52 | .01 | 8.0 | 700 | 60 | | | 4.0 | 250 | 05 | 120 | 22 | 107 | 03 | | 255 | | | 011100 | .46
41.4 | 250 | 95 | 120
84 | 33
30 | 107
95 | .01 | 1.11
11.6 | 255
2,400 | 30 | | 011500
012000 | 20.4 | 754
1,110 | 79
92 | 100 | 30 | 113 | .01
.01 | 9.3 | 2,400 | 154
155 | | 012000 | 1.79 | 340 | 85 | 79 | 30 | 117 | .01 | 2.5 | 830 | 30 | | 013500 | 130 | 641 | 84 | 87 | 30 | 16 | .01 | 27.3 | 2,400 | 569 | | | | | | | | | | | | | | 014500 | 27.8 | 585 | 88 | 100 | 30 | 45 | .01 | 12.4 | 1,760 | 155 | | 015500 | 29.8 | 660 | 99 | 72 | 30 | 38 | .01 | 10.1 | 1,680 | 190 | | 016700 | 2.05 | 460 | 95 | 102 | 31 | 213 | .01 | 2.0 | 940 | 120 | | 017000 | 219
1.98 | 250 | 93 | 84
76 | 30 | 5
85 | .01 | 57.5 | 1,680 | 7 | | 019600 | 1.98 | 680 | 95 | 76 | 32 | 85 | .01 | 2.65 | 960 | 42 6 | | 020000 | 113 | 1,000 | 90 | 91 | 32 | 44 | .01 | 26 | 2,400 | 302 | | 020500 | 46.7 | 810 | 95 | 80 | 30 | 17 | .01 | 13.4 | 970 | 350 | | 021000 | 48.0 | 830 | 82 | 80 | 32 | 29 | .01 | 23.7 | 1,840 | 255 | | 024000 | 42.4 | 1,280 | 91 | 69 | 29 | 118 | .03 | 14.9 | 3,760 | 540 | | 024500 | 31.5 | 1,220 | 91 | 62 | 30 | 83 | .01 | 13.4 | 2,560 | 380 | | 025000 | 155 | 900 | 90 | 57 | 30 | 35 | .02 | 33. 6 | 3,760 | 190 | | 026000 | 61.7 | 1,700 | 89 | 68 | 29 | 90 | .01 | 18.1 | 3,440 | 301 | | 026300 | .58 | 420 | 95 | 46 | 33 | 217 | .01 | 1.2 | 540 | 245 | | 027500 | 895 | 800 | 80 | 63 | 32 | 13 | .04 | 67.9 | 2,400 | 123 | | 030000 | 24.8 | 525 | 98 | 62 | 31 | 68 | .01 | 10 | 790 | 70 | | | | | | | | | | | | | | 031000 | 1,294 | 700 | 78 | 60 | 32 | 8 | .12 | 94.5 | 2,400 | 24 | | 032500 | 64.9
65.9 | 410 | 89
99 | 72
98 | 32
30 | 21
13 | .63 | 19.8 | 480 | 20 | | 034200
034700 | .33 | 650
1,600 | 99 | 135 | 28 | 1,720 | .77
.01 | 14.4
1.15 | 2,890
2,640 | 205
96 0 | | 035000 | 299 | 500 | 93 | 128 | 29 | 14 | .25 | 28 | 2,890 | 0 | | | | | | | | | | | -, | • | | 035500 | 70.7 | 2,000 | 89 | 201 | 27 | 64 | . 05 | 22.7 | 4,050 | 492 | | 036000 | 74.1 | 1,950 | 86 | 199 | 27 | 5 8 | .05 | 25.3 | 4,050 | 401 | | 037400 | 155 | 1,710 | 90 | 150 | 28 | 17 | . 03 | 60.8 | 4,050 | 40 | | 039000 | 130
.56 | 1,000
310 | 97
95 | 155
110 | 28
31 | 23 | .02
.01 | 36
.90 | 3,360 | 120 | | 039050 | . 36 | 310 | 73 | 110 | 31 | 147 | .01 | .90 | 380 | 100 | | 039100 | .15 | 290 | 90 | 110 | 31 | 127 | .01 | .95 | 400 | 100 | | 039400 | .77 | 1,080 | 95 | 135 | 28 | 1,140 | .01 | 1.9 | 2,800 | 200 | | 040000 | 142 | 1,500 | 98 | 136 | 28 | 30 | .01 | 34.9 | 3,840 | 70 | | 040500 | 445 | 1,700 | 89 | 152 | 28 | 31 , | .01 | 48.7 | 5,820 | 40 | | 041000 | 208 | 3,000 | 79 | 167 | 26 | 91 | .11 | 34.4 | 7,700 | 320 | | 041200 | 253 | 2,440 | 85 | 160 | 27 | 66 | .17 | 44.8 | 7,700 | 164 | | 041500 | 83.8 | 2,900 | 88 | 99 | 27 | 147 | .49 | 16.9 | 5,400 | 1,060 | | 041600 | .42 | 1,840 | 95 | 98 | 29 | 1,250 | .01 | 1.1 | 2,560 | 1,100 | | 042700 | 2.03 | 650 | 95 | 120 | 32 | 272 | .01 | 2.45 | 1,090 | 240 | | 042900 | 1.67 | 530 | 95 | 110 | 32 | 149 | .01 | 2.60 | 880 | 170 | | 043100 | 86.3 | 440 | 100 | 95 | 32 | 12 | 1 20 | 17. | ••• | 50 | | 043300 | 51.2 | 805 | 100 | 124 | 32
32 | 12
30 | 1.20
.01 | 17.6
18.4 | 800
2,300 | 50
50 | | 043430 | 14 | 1,280 | 100 | 90 | 32 | 297 | .01 | 6.5 | 3,700 | 10 | | 044000 | 48.6 | 2,190 | 98 | 91 | 29 | 242 | 16.7 | 11.7 | 2,000 | 580 | | 045500 | 269 | 3,700 | 82 | 112 | 25 | 64 | .24 | 36.6 | 5,200 | 200 | | | | | | | | | | | | | TABLE 2.--Indices for basin and climatic characteristics used in multiple regressions--Continued | | | | | | | | - 111 /11420 | TPIC Teg | 163510115- | Continued | |--|-------------------------------------|---|---------------------------------------|------------------------------------|---|---------------------------------|---------------------------|-------------------------------|---------------------------------------|-------------------------------| | Station
number | Drainage
area (mi ²) | Mean basin
elevation
(ft) | Forest cover
(percent of
basin) | Annual precipi-
tation (inches) | Minimum mean
daily January
temperature (°F) | Main channel slope (ft/mi) | Percent area
of lakes | Channel
length (mi) | Stream source
elevation (ft) | Gage elevation
(ft) | | | A | E | F | P | T | SLP | LK | L | SE | GE | | 12046800
047100
047500
048000
049400 | 0.69
4.77
15.5
156
2.96 | 1,110
780
1,550
4,500
1,490 | 85
65
97
83
95 | 27
23
41
66
32 | 31
29
28
26
29 | 590
274
298
196
583 | 0.01
.01
.01
.07 | 2.45
5
9
22.4
4.0 | 260
750
5,450
7,000
2,450 | 28
120
225
569
30 | | 050500
052400 | 11.2 | 1,800
1,450 | 91
95 | 4 3 | 29
28 | 435
127 | .01 | 6.5
4.75 | 3,050
740 | 220
129 | | 053000
053400 | 93.5 | 4,700
1,770 | 80
95 | 97
60 | 25
29 | 20 4
1,840 | .12
.01 | 21.6
1.63 | 6,000
3,400 | 321
140 | | 054000 | 6 6.5 | 4,700 | 95 | 113 | 26 | 150 | .3 | 19.7 | 5,000 | 241 | | 054500
054600
056300 | 51.3
21.6
.82 | 3,830
2,660
500 | 89
88
95 | 110
103
78 | 27
28
34 | 325
384
341 | .5
.29
.01 | 11.8
10
2.05 | 5,200
5,100
610 | 510
500
20 | | 056500
057500 | 57.2
93.7 | 3,700
3,100 | 92
93 | 161
145 | 26
27 | 190
94 | .18 | 13.9
23.5 | 6,400
6,400 | 762
486 | | 060000 | 63.4 | 2,505 | 98 | 161 | 27 | 80 | .17 | 18 | 4,300 | 456 | | 060500 | 76.3 | 2,100 | 98 | 153 | 28 | 64 | . 27 | 24.5 | 4,100 | 110 | | .061200 | .76 | 870 | 95 | 110 | 30 | 408 | .01 | 1.8 | 1,600 | 550 | | 063000 | 3.16 | 924 | 100 | 57 | 34 | 118 | .01 | 3.4 | 2,060 | 395 | | 065500 | 1.51 | 1,120 | 99 | 61 | 34 | 295 | .01 | 1.85 | 880 | 751 | | 066000 | 5.99 | 930 | 96 | 61
62 | 34
34 | 153
39 | 1.68
3.54 | 4.45 | 880 | 540
353 | | 067500
068500 | 15.0
18.4
| 68 4
376 | 97
98 | 61 | 34 | 36 | .71 | 10.1
7.6 | 880
44 0 | 55 | | 070000 | 5.01 | 289 | 80 | 37 | 34 | 43 | .01 | 3.7 | 170 | 20 | | 072000 | 15.3 | 400 | 98 | 50 | 34 | 100 | 4.59 | 6.1 | 900 | 50 | | 073500 | 6.47 | 316 | 77 | 54 | 34 | 58 | .16 | 7.6 | 460 | 316 | | 076500 | 39.3 | 420 | 96 | 84 | 30 | 26 | 1.08 | 8.4 | 480 | 205 | | 078400 | 17.4 | 600 | 98 | 59 | 31 | 54 | 4.85 | 8.6 | 720 | 110 | | 078600 | 1.12 | 470 | 95 | 57 | 31 | 289 | .01 | 1.9 | 1,080 | 60 | | 079000 | 89.8 | 1,340 | 88 | 61 | 29 | 50 | .63 | 27.8 | 3,280 | 350 | | 080000 | 160 | 950 | 78 | 57 | 31 | 24 | .67 | 50.3 | 3,280 | 95 | | 081000
081300 | 24.6
2.28 | 189
280 | 61
80 | 50
4 2 | 31 | 16 | 6.84 | 9.0 | 325 | 25 | | 082500 | 133 | 4,020 | 82 | 94 | 31
25 | 37
192 | .01
.38 | 2.5
25.9 | 285
14,100 | 205
1, 4 50 | | 083000 | 75.2 | 2,740 | 92 | 98 | 27 | 155 | .67 | 13 | 4,240 | 1,340 | | 084000 | 249 | 3,300 | 85 | 92 | 26 | 120 | . 34 | 32.6 | 14,100 | 1,014 | | 084500 | 28.0 | 2,600 | 99 | 81 | 28 | 145 | .37 | 8.6 | 3,800 | 978 | | 087000 | 80.7 | 2,300 | 93 | 71 | 27 | 117 | .01 | 18.4 | 4,930 | 620 | | 088000 | 34.5 | 1,600 | 97 | 54 | 28 | 177 | 1.78 | 11.4 | 580 | 518 | | 090200 | 86.8 | 350 | 45 | 37 | 34 | 17 | 1.00 | 24.6 | 425 | 310 | | 090400 | 5.26 | 410 | 15 | 3 5 | 33 | 14 | .01 | 4.4 | 460 | 315 | | 090500
092000 | 73.8
92.8 | 420
4,100 | 15
70 | 36
105 | 33
2 4 | 13
6 3 0 | .02 | 20.7 | 320 | 280 | | 093000 | 25.9 | 1,500 | 94 | 53 | 27 | 126 | .55
2.71 | 15.5
12.9 | 14,100 | 1,640 | | 093500 | 172 | 3,000 | 90 | 85 | 26 | 214 | .82 | 31.1 | 1,800
14,100 | 583
352 | | 094000 | 78.9 | 4,000 | 68 | 92 | 24 | 289 | .26 | 22.3 | 9,200 | 1,213 | | 095000 | 79.5 | 2,300 | 97 | 65 | 28 | 174 | .64 | 16.5 | 5,440 | 430 | | 096500
096800 | 438
1.01 | 2,200
4,410 | 8 4
95 | 75
60 | 28
21 | 105
1,480 | .78 | 45.3 | 14,100 | 40 | | 097000 | 216 | 4,700 | 95
7 7 | 80 | 22 | 139 | .01
.47 | 2.4
32.7 | 6,080
14,400 | 2,650
1,725 | | | | | • • | - | | , | . 47 | Ja / | 14,400 | 2,143 | TABLE 2.--Indices for basin and climatic characteristics used in multiple regressions--Continued | | | LOI DUSIN | and CIII | atic cha | racteri | stics used | d in mult | iple reg | ressions- | -Catinued | |--|-------------------------------------|---|---------------------------------------|------------------------------------|---|-----------------------------------|-------------------------------------|-------------------------------------|---|--| | Station
number | Drainage
area (mi ²) | Mean basin
elevation
(ft) | Forest cover
(percent of
basin) | Annual precipi-
tation (inches) | Minimum mean
daily January
temperature (°F) | Main channel
slope (ft/mi) | Percent area
of lakes | Channel
length (mi) | Stream source
elevation (ft) | Gage elevation
(ft) | | | A | E | F | P | T | SLP | LK | L | SE ' | GE | | 12097500
097700
100000
102200
102800 | 73.5
2.35
427
2.15
.27 | 4,200
2,810
3,750
430
350 | 93
25
82
10
70 | 94
70
78
37
42 | 22
27
24
32
29 | 143
860
70
10
215 | 0.28
.01
.35
.01 | 20.3
2.3
56.4
3.2 | 6,130
4,000
14,400
780
350 | 1,725
1,440
30
380
240 | | 103200
103500
104000
104500
104700 | .78
11.5
4.67
96.2
3.23 | 350
3,370
3,190
3,190
3,200 | 95
61
99
91
100 | 39
97
84
88
70 | 32
20
20
20
24 | 117
557
630
120
760 | .01
.01
.44
.02 | 1.6
4.6
3.6
16.2
3.1 | 430
3,840
4,440
5,520
4,100 | 235
1,950
1,760
1,480 | | 105000
105710
106500
107200
108500 | 8.56
16.5
230
2.17
27.4 | 3,220
2,890
3,100
1,330
883 | 82
61
90
95
47 | 99
101
85
70
48 | 23
24
25
30
30 | 377
198
41
352
54 | .01
.78
.01
.01 | 4.6
10.1
34.2
3.6
14.1 | 4,040
4,160
5,520
2,890
2,860 | 1,480
1,900
1,250
913
855
310 | | 112500
112600
113000
113200
113300 | 59.2
66.7
399
3.14 | 496
450
2,400
420
420 | 81
80
70
70
50 | 48
47
70
41
40 | 30
34
28
31
31 | 19
25
33
110
25 | 4.01
1.70
.60
2.55 | 12.5
14.1
64.3
2.85 | 420
420
5,520
465
500 | 170
70
60
82
240 | | 113500
114000
114500
115000
115300 | 9.3
6.0
25.4
40.7
.89 | 3,830
3,500
3,460
3,230
3,030 | 78
78
71
77
70 | 118
118
124
120
103 | 21
21
22
23
28 | 317
317
189
116
1,540 | 5.39
.01
1.98
1.48
.01 | 3.7
4.0
7.1
12.2
1.8 | 3,600
4,500
3,600
3,600
4,640 | 2,360
2,300
1,880
1,560
1,590 | | 115500
116100
117000
119600
119800 | 13.4
.19
17.2
6.8
3.05 | 3,360
1,420
2,300
770
360 | 87
99
100
91
75 | 119
90
82
45
45 | 25
33
29
29
32 | 386
155
289
221
95 | .01
.09
.01
.01 | 6.4
1.55
8.2
6.4
2.6 | 4,500
1,560
3,600
1,300
450 | 1,600
1,040
940
50
180 | | 120000
121000
123000
123300
124000 | 12
27
10.7
2.46
13.0 | 305
940
375
450
365 | 80
91
87
90
92 | 45
66
43
45
45 | 32
30
32
31
32 | 65
144
42
127
74 | .01
.37
1.78
.01 | 3.9
10.6
7.5
3.25
8.6 | 380
2,700
600
510
640 | 17
210
210
111
50 | | 125000
126000
126500
130500
131000 | 150
24.6
212
135
96.5 | 600
390
500
3,870
3,600 | 87
82
80
95
95 | 53
38
49
119
126 | 31
33
31
21
21 | 23
49
16
211
173 | 5.70
2.08
4.26
1.39
.53 | 30.1
9.9
34.3
16.6
18.6 | 2,700
550
2,700
4,950
6,000 | 23
70
17
1,030
1,040 | | 132700
133000
133500
134000
134500 | .95
355
10.6
146
535 | 2,260
3,800
3,500
3,800
3,700 | 95
85
62
85
85 | 97
122
170
151
128 | 24
21
21
21
22 | 2,010
98
673
132
87 | .01
.91
3.88
.42
.74 | 1.9
33.8
6.9
27
42.4 | 4,800
4,950
7,140
5,880
4,950 | 662
575
1,350
525
209 | | 135000
135500
137500
141000
141300 | 19
8.31
74.5
56.4
154 | 2,660
1,800
3,120
625
3,710 | 75
90
83
91
75 | 88
75
120
48
137 | 26
28
25
31
23 | 300
610
80
40
117 | .85
.01
.41
2.12
1.30 | 9.35
5.9
19.2
15.1
29.6 | 4,500
4,400
4,250
440
6,020 | 174
970
750
100
780 | TABLE 2.--Indices for basin and climatic characteristics used in multiple regressions--Continued | Station. | Drainage
area (mi ²) | Mean basin
elevation
(ft) | Forest cover
(percent of
basin) | Annual precipi-
tation (inches) | Minimum mean
daily January
temperature (°F) | Main channel
slope (ft/mi) | Percent area
of lakes | Channel
length (mi) | Stream source
elevation (ft) | Gage elevation
(ft) | |-------------------|-------------------------------------|---------------------------------|---------------------------------------|------------------------------------|---|-------------------------------|--------------------------|-----------------------------|---------------------------------|------------------------| | Station
number | air
red | ean
elev
(ft) | p p r | at; | nir
lai:
emj | ni
joji | erc | a a | i e | ge
) | | | Dr | Σ
e e ~ | 9
9 | An
t | Α P P | e X | P. O | ភូ ។ | St. | පි | | | A | E | F | P | T | SLP | LK | L | SE | GE | | | | | | | | | | | | | | 12141500 | 169 | 3,500 | 74 | 132 | 23 | 91 | 1.31 | 37.2 | 6.020 | 460 | | 142000
143000 | 64 | 3,200 | 77 | 131
119 | 26
26 | 85
68 | .79
1.67 | 17.3 | 5,700 | 1,130
470 | | 143300 | 95.7
.15 | 3,100
2,850 | 75
70 | 121 | 21 | 68
2, 800 | .01 | 24.2
1.15 | 5,700
4,800 | 1,900 | | 143310 | .34 | 3, 9 00 | 20 | 121 | 26 | 2,530 | .01 | 1.45 | 5,320 | 1,900 | | 140400 | 43.4 | 2 200 | | 100 | | | 23 | 2 25 | - 4-0 | 1 400 | | 143400
144000 | 41.6
81.7 | 3,3 9 0
2,900 | 80
81 | 120
110 | 22
25 | 760
102 | .31
.38 | 2.25
27.2 | 5,450
5,450 | 1,480
432 | | 144500 | 375 | 3,300 | 76 | 118 | 25 | 72 | 1.24 | 44.8 | 6,020 | 120 | | 145500 | 30.6 | 1,330 | 99 | 77 | 29 | 179 | .01 | 12.5 | 3,000 | 250 | | 146000 | 15.5 | 410 | 90 | 47 | 31 | 52 | .01 | 8.4 | 560 | 70 | | 1.47000 | 17.1 | 701 | | | 20 | | 24 | 11 0 | 1 500 | 120 | | 147000
147500 | 17.1
39.9 | 781
2,590 | 97
73 | 53
97 | 30
28 | 50
103 | .24
.04 | 11.2
15.2 | 1,580
5,640 | 120
600 | | 148000 | 19.7 | 2,940 | 73
59 | 112 | 27 | 162 | 7.12 | 10.2 | 2,980 | 1,300 | | 148100 | 2.19 | 2,290 | 99 | 80 | 29 | 610 | .01 | 4.1 | 3,760 | 1,200 | | 148500 | 81.4 | 2,300 | 73 | 94 | 28 | 115 | 1.80 | 18.2 | 5,640 | 348 | | 149000 | 603 | 2,400 | 79 | 99 | 26 | 40 | .70 | 60.8 | 6,020 | 50 | | 152500 | 54.5 | 1,500 | 96 | 68 | 29 | 46 | .19 | 20.5 | 4,400 | 340 | | 153000 | 17.0 | 376 | 94 | 42 | 30 | 40 | .09 | 8.7 | 560 | 200 | | 156400 | .97 | 300 | 10 | 38 | 34 | 193 | .01 | 1.8 | 310 | 212 | | 157000 | 15.4 | 220 | 75 | 37 | 31 | 78 | .07 | 6.0 | 395 | 28 | | 161000 | 119 | 2,600 | 94 | 106 | 25 | 46 |
.09 | 36.2 | 6,610 | 310 | | 162500 | 199 | 2,300 | 94 | 94 | 26 | 43 | .06 | 47.2 | 6,610 | 80 | | 164000 | 46.2 | 1,400 | 92 | 91 | 29 | 132 | .88 | 18.7 | 4,240 | 103 | | 165000
166500 | 20.0
65.9 | 2,530 | 70 | 100 | 24 | 308 | .01 | 10.2 | 6,600 | 490 | | 166500 | 63.9 | 2,540 | 98 | 89 | 30 | 101 | .01 | 22.6 | 4,000 | 220 | | 167000 | 26 2 | 2,300 | 92 | 83 | 28 | 33 | .01 | 42 | 3,210 | 89 | | 168500 | 52.0 | 1,290 | 91 | 64 | 30 | 75 | 2.49 | 16.3 | 1,310 | 120 | | 169500 | 7.52 | 270 | 60 | 37 | 36 | 74 | 3.46 | 6.0 | 580 | 55 | | 172000
172500 | 63.2
780 | 4,400
4,800 | 76
78 | 74
75 | 18
16 | 115
38 | .01
.21 | 18.5 | 3,900 | 1,600 | | 2,2300 | 700 | 4,000 | 70 | ,, | *0 | 36 | .21 | 56.0 | 3,900 | 1,250 | | 173500 | 206 | 5,700 | 79 | 77 | 18 | 194 | .05 | 19.6 | 6,690 | 1,640 | | 174000 | 210 | 5,700 | 79 | 77 | 18 | 190 | .06 | 20.5 | 6,690 | 1,554 | | 174500
175500 | 999
105 | 4,990
5,800 | 78
61 | 75
129 | 17 | 34 | .17 | 59 | 3,900 | 1,190 | | 176000 | 114 | 5,600 | 63 | 128 | 22
22 | 257
218 | .11
.10 | 15.2
18.2 | 6,330
6,330 | 1,220
1,085 | | | | | - | | | | • • • • | 10.2 | 0,330 | 1,000 | | 177500 | 22.0 | 5,000 | 84 | 88 | 24 | 560 | .46 | 7.8 | 6,640 | 907 | | 178100 | 27.9 | 4,140 | 77 | 125 | 26 | 578 | . 31 | 7.7 | 7,280 | 1,080 | | 181100
182500 | 2.36
168 | 6,240
4,400 | 1
78 | 154
131 | 16
23 | 876
156 | .05 | 2.6 | 7,280 | 5,290 | | 186000 | 152 | 3,700 | 81 | 139 | 21 | 125 | .17
.14 | 28.6
24.5 | 8,260
7,360 | 380
930 | | | | -, | - | | | | ••• | | 7,300 | 930 | | 187500 | 293 | 3,800 | 80 | 128 | 21 | 89 | .08 | 34.4 | 7,360 | 525 | | 189000
189400 | 335
1.30 | 4,500
1,620 | 74 | 132 | 20 | 96 | .16 | 42 | 9,050 | 530 | | 189500 | 714 | 3,900 | 80
79 | 79
125 | 28
21 | 8 42
69 | .01
.11 | 2.6 | 3,160 | 485 | | 196000 | 10.7 | 1,280 | 99 | 58 | 29 | 203 | .01 | 5 4.9
7 .1 | 7,360
1,350 | 266
125 | | 100000 | | | | | | | | | | | | 196500 | 34.2 | 2,310 | 88 | 77 | 31 | 143 | .65 | 12.6 | 4,320 | 90 | | 197200
199800 | 1.82
3.56 | 1,970 | 90 | 60 | 31 | 1,080 | .01 | 3.6 | 3,870 | 135 | | 200700 | 2.58 | 2,700
490 | 6 2
70 | 60
35 | 33
37 | 435
166 | .01
.01 | 3.8
2.9 | 4,000 | 1,700 | | 200800 | 2.35 | 1,220 | 95 | 48 | 31 | 398 | .01 | 2.9 | 700
1,980 | 300
480 | | | | | | | | | | | A , 300 | 430 | TABLE 2.--Indices for basin and climatic characteristics used in multiple regressions--Continued | Station
number | Drainage
area (mi ²) | Mean basin
elevation
(ft) | Forest cover
(percent of basin) | Annual precipi-
tation (inches) | Minimum mean
daily January
temperature (°F) | Main channel
slope (ft/mi) | Percent area
of lakes | Channel
length (mi) | Stream source
elevation (ft) | Gage elevation
(ft) | |--|-------------------------------------|---------------------------------|------------------------------------|------------------------------------|---|-------------------------------|---------------------------|-----------------------------|----------------------------------|-----------------------------| | | A | E | P | P | T | SLP | LK | L | SE | GE | | | | | | | | | | | | | | 12201500
204400
205000
209000 | 87.8
1.15
105
103 | 904
4,070
4,300
3,000 | 87
95
71
84 | 49
80
109
92 | 30
22
19
25 | 14
1,700
106
58 | 1.82
.01
.20
.30 | 22.2
2.2
17.6
25.8 | 1,650
5,700
6,400
5,300 | 45
1,750
1,245
385 | | 209500 | 23.1 | 3,020 | 90 | 93 | 24 | 334 | .10 | 9.5 | 5,600 | 400 | | 210500
211500
212000 | 584
648
22.3 | 3,000
2,760
154 | 86
82
20 | 92
88
42 | 22
23
28 | 62
41
23 | .24
.24
1.26 | 43.1
63.1
8.2 | 6,400
6,400
260 | 204
24
110 | | 212700 | .74 | 290 | 25 | 40 | 29 | 78 | .01 | 1.45 | 320 | 200 | | 212800 | .24 | 230 | 20 | 40 | 29 | 115 | .ol | 1.1 | 320 | 202 | | 395800
395900
396000 | 4.75
16.8
68.3 | 2,430
2,490
3,650 | 85
86
99 | 36
36
38 | 17
16
16 | 60
67
109 | .01
1.49
.42 | 5.2
8.7
16.2 | 3,120
3,120
5,170 | 2,240
2,180
2,070 | | 396100 | 16.8 | 3,630 | 99 | 37 | 17 | 167 | .01 | 11.2 | 5,550 | 2,010 | | 396450 | 11.3 | 3,510 | 99 | 29 | 17 | 225 | .01 | 7.7 | 3,600 | 2,100 | | 396900
398900 | 70.2
450 | 4,760
4,000 | 100
92 | 45
30 | 18
14 | 140
62 | 1.70 | 17.4
36.6 | 6,100
7,890 | 2,557
2,000 | | 399900 | 140 | 3,700 | 90 | 25 | 15 | 130 | .01 | 23 | 5,000 | 2,250 | | 400500 | 225 | 4,120 | 96 | 25 | 15 | 93 | .05 | 34.8 | 5,000 | 1,295 | | 401500 | 2,220 | 4,560 | 96 | 27 | 13 | 20 | .21 | 125.4 | 6,000 | 1,837 | | 403700 | 1.18
11.9 | 4,560
3,180 | 80
99 | 24
20 | 14
15 | 645
703 | .01 | 1.8
5.2 | 5,650
4,050 | 4,025
1,350 | | 405400 | 48.2 | 2,390 | 85 | 18 | 16 | 53 | 7.27 | 18.5 | 2,880 | | | 407500
407520 | 36 | 3,160 | 97 | 20 | 14 | 71 | .01 | 13.6 | 4,400 | 1,989
2,006 | | 407600 | 4.08 | 3,210 | 90 | 20 | 16 | 520 | .01 | 3.55 | 3,980 | 2,230 | | 407700 | 94.1 | 3,160 | 94 | 22 | 16 | 109 | .02 | 18.7 | 5,100 | 1,674 | | 408200 | 1.65 | 3,690 | 99 | 34 | 17 | 295 | .01 | 2.25 | 3,950 | 3,150 | | 408300 | 132 | 3,480 | 98 | 29 | 16 | 54 | .62 | 23.2 | 3,300 | 1,983 | | 408400 | 11.1 | 3,420 | 99 | 25 | 16 | 250 | .01 | 5.5 | 4,060 | 2,450 | | 408420 | 37.0 | 2,570 | 95 | 20 | 16 | 237 | .01 | 9.8 | 4,480 | 1,600 | | 408500 | 83.0 | 3,510 | 96 | 26 | 16 | 121 | .01 | 15.8 | 5,100 | 1,950 | | 409000 | 1,007 | 3,000 | 89 | 21 | 16 | 16 | .64 | 71.3 | 4,400 | 1,500 | | 409500 | 161 | 3,650 | 87 | 20 | 16 | 99 | .01 | 27.8 | 5,720 | 1,250 | | 410600 | 18.1 | 3,770 | 90 | 21 | 15 | 237 | .01 | 7.2 | 5,650 | 2,120 | | 410650 | 6.96 | 3,330 | 90 | 22 | 15 | 317 | .01 | 4.3 | 3,540 | 2,520 | | 423550 | 2.18 | 2,710 | 2 | 20 | 17 | 109 | .01 | 3.55 | 3,450 | 2,440 | | 423700 | .59 | 2,730 | 5 | 22 | 16 | 178 | .01 | 1.95 | 3,160 | 2,590 | | 423900 | 2.02 | 2,680 | 10 | 22 | 19 | 453 | .01 | 2.7 | 3,640 | 2,220 | | 424000 | 689 | 2,710 | 78 | 20 | 20 | 12.5 | .05 | 76.6 | 4,000 | 1,720 | | 429600 | 31.9 | 2,680 | 80 | 28 | 19 | 118 | .01 | 13.9 | 5,040 | 1,840 | | 429800 | 1.83 | 2,600 | 80 | 18 | 16 | 355 | .01 | 2.4 | 3,590 | 2,200 | | 430370 | 2.07 | 2,340 | 30 | 18 | 17 | 160 | .01 | 2.2 | 2,500 | 2,075 | | 431000 | 665 | 2,400 | 60 | 25 | 17 | 13 | .55 | 47.9 | 4,720 | 1,590 | | 431100 | 11.9 | 2,200 | 25 | 20 | 18 | 143 | .01 | 6.3 | 2,920 | 1,580 | | 433300 | 1.14 | 2,580 | .03 | 1 15 | 18 | 230 | .01 | 1.8 | 2,530 | 2,390 | | 433580 | 23.2 | 2,570 | . 01 | | 17 | 7.5 | .01 | 8 | 2,600 | 1,427 | | 433800 | 4.25 | 4,030 | 95 | 19 | 13 | 173 | .01 | 6 | 5,200 | 3,015 | | 437500 | 122 | 3,100 | 91 | 21 | 15 | 84 | .21 | 17.1 | 3,920 | 1,820 | | 437930 | 35.4 | 2,260 | .01 | | 15 | 57 | .01 | 10.1 | 3,200 | 1,955 | | 437950 | 4.75 | 2,100 | .01 | 1 12 | 17 | 350 | .01 | 3.05 | 2,200 | 1,210 | | | | | | | | | | | | | TABLE 2.--Indices for basin and climatic characteristics used in multiple regressions--Continued | | 2) | ជជ | Forest cover
(percent of
basin) | Annual precipi-
tation (inches) | Minimum mean
daily January
temperature (°F) | Main channel
slope (ft/mi) | area | (mi) | Stream source
elevation (ft) | Gage elevation
(ft) | |-----------------------------------|-------------------------------------|---------------------------------|---------------------------------------|------------------------------------|---|-------------------------------|-----------------------|-------------------|---------------------------------|------------------------| | | aj e | 181
110 | o in Co | ŭ, | ra rat | har
C | | _ | ţ; g | ė – | | Station | 9 e | vat ba | rest c
percen
basin) | a
ioi | 1y
pe | ្តស្ត | La | in e | 8 A B | e e]
(ft) | | number | Drainage
area (mi ²) | Mean basin
elevation
(ft) | ore
pe | tat | lini
dai
tem | fain
slo | Percent a
of lakes | Channel
length | Stre | Ga ge | | | A
A | E
E | F | P. | T | SLP | LK | L | SE | GE | | | | | | | | | | | | | | 12437960 | 28 | 2,700 | 0.10 | 12 | 14 | 75 | 0.01 | 10.7 | 3,080 | 2,075 | | 439200
44 1800 | 1.68
1.42 | 4,180
4,260 | .01
21 | 21
21 | 12
10 | 440
853 | .01
.01 | 2.6
2.35 | 4,770
5,360 | 3,520
2,640 | | 442000 | 130 | 5,520 | 79 | 29 | 10 | 273 | .01 | 16.6 | 5,660 | 1,880 | | 442500 | 3,550 | 5,110 | 85 | 30 | 8 | 21 | .23 | 140 | 6,500 | 1,138 | | 443700 | 4.59 | 2,870 | 6 | 14 | 10 | 459 | .01 | 5 | 3,840 | 1,400 | | 444400 | .66 | 2,020 | .01 | 14 | 12 | 730 | .01 | 1.75 | 2,630 | 1,500 | | 445800 | 4.12 | 3,740 | 99 | 18 | 15 | 379 | .01 | 4.15 | 4,480 | 2,640 | | 447100 | 2.66 | 1,740 | . 01
99 | 12
19 | 16
8 | 476
814 | .60
. 01 | 2.75
5.15 | 1,920
7,150 | 820
2,300 | | 447400 | 3.8 | 4,760 | 99 | 19 | 0 | 614 | .01 | 3.13 | 7,130 | 2,300 | | 449500 | 1,301 | 5,180 | 76 | 35 | 9 | 72 | .14 | 58.8 | 6,600 | 1,580 | | 449600 | 62.0 | 5,090 | 2.4 | 24 | 12 | 331 | .4 | 9.6 | 5,800 | 2,800 | | 449900
449950 | .77 | 3,180
4,780 | 62
78 | 20
32 | 14
10 | 1,580
42 | .01
.11 | 1.9
92.1 | 3,940
6,600 | 1,040
900 | | 450500 | 1,772
1,792 | 4,780 | 78 | 32 | 10 | 39 | .11 | 97.8 | 6,600 | 739 | | | | | | | | | | | | | | 451000 | 344 | 5,130 | 83 | 99 | 16 | 137 | .32 | 28.7 | 7,120 | 1,100 | | 451500
· 452800 | 64.8
203 | 4,930
5,230 | 68
91 | 52
59 | 16
16 | 239
91 | .43
.11 | 19.7
40.4 | 5,590
8,800 | 1,250
1,563 | | 453000 | 419 | 4,390 | 92 | 45 | 17 | 68 | .06 | 58.2 | 8,800 | 690 | | 45360 0 | .77 | 2,280 | .01 |
20 | 16 | 1,100 | .01 | 2.35 | 3,640 | 810 | | 454000 | 150 | 4,590 | 51 | 108 | 17 | 89 | .08 | 23.1 | 7,030 | 1,880 | | 455000 | 273 | 4,720 | 64 | 100 | 17 | 46 | 2.3 | 34 | 5,800 | 1,860 | | 456500 | 172 | 4,440 | 87 | 78 | 16 | 56 | .41 | 32.1 | 8,400 | 2,100 | | 457000 | 591 | 4,540 | 76 | 69 | 16 | 26 | 1.07 | 41.9 | 5,800 | 1,805 | | 457300 | 2.55 | 2,760 | 95 | 41 | 15 | 495 | .01 | 2.8 | 3,520 | 2,046 | | 458000 | 193 | 5,260 | 85 | 88 | 17 | 81 | .49 | 28.2 | 5,500 | 1,450 | | 458900 | 1.36 | 2,140 | 90 | 23 | 16 | 663 | .01 | 2.25 | 2,980 | 1,275 | | 459000
459400 | 1,000
3.96 | 4,590 | 80 | 67 | 16 | 25
1,400 | .94 | 66.6 | 5,800 | 1,028 | | 461000 | 1,155 | 4,830
4,500 | 90
76 | 27
62 | 16
17 | 24 | 3.7
1.01 | 2.4
71.9 | 5,940
5,800 | 3,840
905 | | | - | - | | | | | | | | | | 461 100
4612 00 | 15.4
2.49 | 3,530 | 90 | 25 | 17 | 456 | .01 | 7.4 | 5,730 | 1,870 | | 461400 | 39.8 | 2,980
3,400 | 99
88 | 22
25 | 17
17 | 574
309 | .01
.01 | 3.6
11.1 | 4,510
6,800 | 1,880
1,750 | | 461500 | 18.6 | 3,060 | 95 | 24 | 16 | 432 | .01 | 6.1 | 4,720 | 1,730 | | 462000 | 81.2 | 3,100 | 80 | 21 | 17 | 185 | .01 | 17.4 | 5,840 | 850 | | 462700 | 3.48 | 2,770 | .02 | 10 | 18 | 82 | .01 | 3.6 | 3,200 | 2,300 | | 462800 | 15.4 | 2,810 | .05 | 10 | 18 | 69 | .01 | 7.3 | 3,200 | 2,400 | | 463000 | 99.9 | 2,800 | .01 | 11 | 18 | 30 | .01 | 19.8 | 2,900 | 2,260 | | 463600 | 2.22 | 2,280 | .01 | 10 | 18 | 235 | .01 | 2.1 | 2,600 | 2,050 | | 46370 0 | .4 | 2,500 | .01 | 10 | 18 | 105 | .01 | 1.4 | 2,520 | 2,325 | | 463800 | 1.1 | 2,500 | .01 | 10 | 18 | 65 | .01 | 1.35 | 2,600 | 2,524 | | 464600 | .82 | 2,460 | .01 | 12 | 17 | 192 | .01 | 2.3 | 2,640 | 2,170 | | 464650 | .68 | 2,480 | .01 | 17 | 18 | 54 | .01 | 1.6 | 2,580 | 2,430 | | 465000
465 1 00 | 1,042
.25 | 2,200
2,100 | 2.9
.01 | 13
10 | 18
17 | 13
130 | .40
.01 | 76.8
1.03 | 2,780 | 1,386 | | | | | | | | | | | 2,140 | 2,050 | | 465300 | 1.12 | 2,450 | .01 | 13 | 18 | 209 | .01 | 2.3 | 2,840 | 2,340 | | 465500 | 427 | 1,500 | .01 | 10 | 18 | 22 | .01 | 54.3 | 1,800 | 1,280 | | 467 0 00
46740 0 | 2,009
2.7 | 2,150
2,400 | .01
.01 | 11
10 | 19
18 | 10
180 | 13
.01 | 125.3
2.2 | 2,780 | 1,070 | | 468500 | 36 | 1,950 | 4 | 10 | 18 | 143 | 3.65 | 9.9 | 2,500
2,200 | 2,073
1,092 | | -3000 | -• | _,,,, | • | | | | ٥.05 | | 2,200 | -,032 | TABLE 2.--Indices for basin and climatic characteristics used in multiple regressions--Continued | Station
number | Drainage
area (mi ²) | Mean basin
elevation
(ft) | Forest cover
(percent of
basin) | Annual precipi-
tation (inches) | Minimum mean
daily January
temperature (°F) | Main channel
slope (ft/mi) | Percent area
of lakes | Channel
length (mi) | Stream source
elevation (ft) | Gage elevation
(ft) | |----------------------------|-------------------------------------|---------------------------------|---------------------------------------|------------------------------------|---|-------------------------------|--------------------------|------------------------|---------------------------------|-------------------------| | | A | E | F | P | T | SLP | LK. | L | SE | GE | | | | | | | | | | | | | | 12470300 | 1.57 | 2,620 | 0.01 | 10 | 19 | 100 | 0.01 | 1.95 | 2,670 | 2,470 | | 471100 | 8.52 | 1,960 | .01 | 12 | 18 | 24 | .01 | 6.6 | 2,300 | 1,600 | | 471200 | .21 | 1,680 | .01 | 10 | 19 | 167 | .01 | 1.2 | 1,780 | 1,550 | | 471300 | .95 | 1,520 | .01 | 10 | 16 | 152 | .01 | 1.5 | 1,590 | 1,415 | | 473700 | 6.06 | 1,400 | . 01 | 10 | 17 | 45 | .01 | 6.2 | 1,380 | 1,275 | | 480500 | 200 | 3,700 | 94 | 40 | 17 | 35 | .01 | 26.5 | 5,840 | 1,932 | | 480700 | 2.65 | 3,990 | 95 | 30 | 17 | 548 | .01 | 3.5 | 5,100 | 2,880 | | 483300 | 2.12 | 3,280 | .02 | 18 | 18 | 503 | .01 | 3.4 | 3,920 | 2,420 | | 483800 | 69.5 | 4,830 | 90 | 25 | 17 | 180 | .01 | 18.7 | 5,840 | 2,500 | | 484200 | .65 | 2,640 | .01 | 13 | 18 | 330 | .01 | 1.7 | 2,890 | 2,350 | | | , | | | | | | | 2 25 | 2 1 | 7 44- | | 484600 | 5.48 | 2,250 | .01 | 10 | 15 | 338 | .01 | 3.95 | 3,160
2,980 | 1,405 | | 485700 | .68 | 2,370 | .01 | 10 | 15 | 336 | .01 | 2.5
4.15 | 4,360 | 1,940
2,160 | | 485900
488300 | 2.26
1.10 | 3,290
4,800 | .01
99 | 13
48 | 16
19 | 494
1,300 | .01
.01 | 2.0 | 6,320 | 3,240 | | 488500 | 78.9 | 4,860 | 91 | 55 | 19 | 64 | .19 | 22.6 | 5,300 | 2,700 | | 400500 | , | ., | | | | | | | -, | -, | | 491700 | 3.91 | 4,300 | 99 | 25 | 18 | 1,070 | .01 | 3.1 | 6,120 | 2,560 | | 492500 | 239 | 4,740 | 90 | 57 | 19 | 42 | 2.08 | 30.4 | 7,770 | 2,280 | | 500400 | 7.3 | 2,460 | .01 | 10 | 19 | 232 | .01 | 8.0 | 4,180 | 1,609 | | 500500 | 68.9 | 4,700 | 95 | 53 | 18 | 193 | .01 | 17.3 | 6,980 | 2,450 | | 501000 | 24.8 | 4,280 | 98 | 54 | 18 | 286 | .01 | 11.2 | 6,800 | 2,400 | | 502000 | 119 | 3,870 | 94 | 49 | 19 | 140 | .10 | 24.9 | 6,970 | 1,830 | | 502500 | 173 | 3,200 | 65 | 38 | 18 | 86 | .01 | 45.1 | 6,880 | 940 | | 506000 | 122 | 3,550 | 80 | 29 | 16 | 132 | .01 | 25.7 | 4,530 | 1,400 | | 506500 | 81.5 | 2,990 | 60 | 39 | 16 | 178 | .01 | 18.9 | 5,850 | 1,150 | | 507300 | 1.24 | 1,360 | .01 | 10 | 20 | 182 | .01 | 2.2 | 1,450 | 960 | | | | | | | | | | | | | | 507600 | .38 | 3,520 | 95
10 | 2 4
18 | 21
21 | 925
311 | .01
.01 | 1.6 | 4,200 | 2,650 | | 507660
508500 | 8.54
434 | 3,020
2,910 | 40 | 18 | 20 | 98 | .01 | 6.3
32.0 | 3,500
5,220 | 1,640
880 | | 508800 | 1.91 | 2,060 | .01 | 10 | 21 | 275 | .01 | 3.0 | 2,700 | 1,600 | | 510600 | 2.88 | 1,540 | .01 | 10 | 22 | 53 | .01 | 3.5 | 1,620 | 1,350 | | | | | | | | | | | | | | 510700 | 3.35 | 850 | .01 | 10 | 23 | 57 | .01 | 2.9 | 685 | 510 | | 512500 | 27.8 | 1,400 | .01 | 10 | 22 | 45 | .01 | 14.1 | 1,780 | 1,160 | | 512600 | 2.44 | 1,520 | .01 | 10
10 | 22
21 | 110 | .01 | 2.9 | 1,710 | 1,340 | | 512700
513000 | 3.71
234 | 1,300
1,300 | .01
.01 | 10 | 22 | 61
36 | .01
.01 | 5.0
27.8 | 1,820
1,840 | 1,025
840 | | 313000 | 234 | 1,500 | | | | 30 | | 27.0 | 1,040 | 040 | | 513300 | 27.1 | 1,300 | .01 | 10 | 23 | 19 | .01 | 17.8 | 1,550 | 1,300 | | 513500 | 383 | 1,200 | .01 | 10 | 22 | 22 | .01 | 48.3 | 1,840 | 580 | | 1 222 4 - 22 | 1.55 | 2 = | 40 | 20 | •• | 150 | | 22 - | | 1 424 | | 13334500 | 156
170 | 3,760
3,550 | 49
45 | 22
24 | 22
21 | 150
140 | .01
.01 | 23.7
27.1 | 6,10 0
6,100 | 1,436
1,090 | | 334700
335200 | 1.80 | 1,520 | .01 | 14 | 24 | 296 | .01 | 3.2 | 1,860 | 1,050 | | 343520 | 5.60 | 2,490 | .01 | 15 | 23 | 281 | .01 | 4.6 | 2,760 | 1,575 | | 343620 | .54 | 2,640 | .01 | 17 | 25 | 100 | .01 | 1.75 | 2,660 | 2,450 | | | | • | | | | | | | • | • | | 343660 | 1.85 | 2,540 | .01 | 16 | 25 | 80 | .01 | 1.85 | 2,640 | 2,425 | | 344500 | 431 | 3,000 | 35 | 23 | 25 | 72 | .01 | 50.6 | 6,200 | 730 | | 346100 | 497 | 3,050
2,770 | 60 | 31 | 21 | 9.8 | . 05 | 73.7 | 3,500 | 1,957 | | | | 2.//0 | 8.3 | 22 | 26 | 19 | .01
.01 | 23.6 | 4,980 | 2,326 | | 348000
348400 | 132 | | 01 | 21 | | | | | | 2 470 | | 348000
348400 | .88 | 2,570 | .01 | 21 | 24 | 80 | .01 | 1.5 | 2,610 | 2,470 | | 348400 | .88 | 2,570 | | | | | .01 | | 3,120 | 2,470 | | 348400
348500 | .88
27.1 | 2,570 | .01
.4
34 | 21
21
25 | 24
24
23 | 28
19 | | 1.5
15
58.9 | | | | 348400
348500
349210 | .88 | 2,570 | .4 | 21 | 24 | 28 | .01 | 15 | 3,120 | 2,328
1,932
1,990 | | 348400
348500 | .88
27.1
796 | 2,570
2,670
2,990 | .4
34 | 21
25 | 24
23 | 28
19 | .01 | 15
58.9 | 3,120
3,500 | 2,328
1,932 | TABLE 2.--Indices for basin and climatic characteristics used in multiple regressions--Continued | | | | | | E) | | | | | | |-------------------|-------------------------------------|---------------------------------|---------------------------------------|------------------------------------|--|-------------------------------|-----------------------|-------------------|--------------------------------|------------------------| | | | | | Annual precipi-
tation (inches) | بر
(۴) | (Ŧ | | | tream source
elevation (ft) | e
o | | | æ | | a A | ici | aan
Jre | ne1
t∕m | area | (mi) | o re | a
ti | | | aj 2 | i or | , t ç | pre
() | Jar | anı
(f) | | | ğ <u>.i.</u> | 9 | | Shahian | 989 | ya t | rest c
percen
basin) | ion | Ly Per | ပ် မွ | lak
1ak | ne)
gth | am
Vat | el
ft) | | Station
number | Drainage
area (mi ²) | Mean basin
elevation
(ft) | Forest cover
(percent of
basin) | in the | Minimum mean
daily January
temperature (| Main channel
slope (ft/mi) | Percent a
of lakes | Channel
length | Stream source
elevation (f | Gage elevation
(ft) | | | Dr. | Σ | | « | × | Σ | щ | U | Ø | | | | λ | E | F | P | T | SLP | LK | <u>L</u> | SE | GE | | 13350500 | 189 | 2,680 | 0.1 | 18 | 26 | 19 | 0.01 | 48.1 | 3,100 | 1,868 | | 351000 | 2,500 | 2,410 | 15 | 18 | 22 | 12 | .29
.01 | 147.7
2.1 | 3,500
2,050 | 1,040
1,920 | | 352200 | 1.51
1.27 | 1,900
1,640 | .01
.01 | 13
12 | 20
25 | 48
166 | .01 | 2.65 | 1,800 | 1,260 | | 352550
353050 | 1.80 | 1,180 | .01 | 10 | 23 | 69 | .01 | 2.65 | 1,220 | 1,050 | | 14013000 | 59.6 | 3,860 | 87 | 40 | 20 | 160 | .01 | 13.3 | 5,9 00 | 2,000 | | 013500 | 17.0 | 3,190 | 55 | 38 | 22 | 253 | .01 | 8.9 | 4,420 | 1,700 | | 0159 00 | 1.94 | 1,850 | .01 | 20 | 25 | 214 | .01 | 2.8 | 2,100 | 1,465 | | 016000 | 48.4 | 2,360 | 81 | 28 | 24 | 157 | .01 | 16.6 | 4,630 | 1,200 | | 016500 | 102 | 3,750 | 85 | 30 | 25 | 151 | .01 | 17.7 | 5,600 | 1,870 | | 01 6600 | 4.12 | 2,850 | 5 | 23 | 24 | 376 | .01 | 4.3 | 3,420 | 934 | | 016650 | 3.01 | 2,440 | .01 | 21 |
24 | 275 | .01 | 5.0 | 3,100 | 1,700 | | 017000 | 361
2.68 | 2,950 | 40
.01 | 25
19 | 25
24 | 82
167 | .01
.01 | 35.4
3.2 | 5,600
2,120 | 1,150
1,650 | | 017040
017070 | 4.92 | 2,0 8 0
1,950 | .01 | 18 | 24 | 77 | .01 | 4.0 | 1,950 | 1,630 | | 017200 | 4.16 | 1,730 | .01 | 16 | 24 | 91 | .01 | 3.8 | 1,880 | 1,410 | | 017500 | 721 | 2,200 | 30 | 20 | 23 | 38 | .01 | 68.6 | 5,700 | 530 | | 018500 | 1,657 | 1,600 | 25 | 22 | 19 | 60 | .15 | 59.4 | 5,700 | 405 | | 019100 | .8 | 1,120 | .01 | 10 | 21 | 650 | .01 | 2.2 | 1,610 | 420 | | 034250 | .5 | 2,750 | .01 | 13 | 19 | 280 | .01 | 1.1 | 2,920 | 2,640 | | 034270 | 50.3 | 1,370 | .01 | 10 | 20 | 37 | .01 | 13.6 | 1,800 | 885 | | 034320 | .61 | 790 | .01 | 10 | 23 | 100 | .01 | 2.2 | 912 | 690 | | 034325
107000 | 8.35
151 | 3,260
4,690 | .01
88 | 10
58 | 20
19 | 100
52 | .02
.08 | 6.1
31.0 | 3,980
8,200 | 2,820
2,720 | | 110000 | 360 | 4,520 | 87 | 56 | 20 | 52
53 | .29 | 45.2 | 8,200 | 1,703 | | 111800 | 10.4 | 4,290 | 95 | 25 | 20 | 380 | .01 | 7.2 | 5,760 | 2,390 | | 112000 | 83.5 | 3,160 | 92 | 25 | 21 | 116 | .01 | 17 | 4,600 | 1,690 | | 112200 | .71 | 1,890 | 5 | 20 | 22 | 1 56 | .01 | 2.4 | 2,360 | 1,675 | | 112500
113000 | 280
1,297 | 2,600
3,140 | 70
77 | 25
36 | 21
21 | 68
4 6 | .05
.10 | 34.7
88.7 | 4,600
8,200 | 570
289 | | 113000 | 1,291 | 3,140 | | 30 | | | | | 0,200 | | | 121300 | 32.4 | 5,190 | 77 | 106 | 22 | 428 | .01 | 10.3 | 7,900 | 3,080 | | 121400 | 64.9 | 4,740
3,450 | 83
92 | 97
92 | 22
23 | 262 | .01 | 16.8
14.6 | 7,900 | 2,050 | | 121500
122000 | 69.3
1 8 5 | 3,450 | 92
84 | 82
82 | 23
21 | 12 3
195 | .59
.20 | 21.7 | 3,950
7,900 | 2,00 0
1,780 | | 123000 | 294 | 3,380 | 88 | 71 | 23 | 101 | .03 | 39.5 | 7,900 | 360 | | 123500 | 386 | 3,220 | 86 | 66 | 23 | 93 | .27 | 45.2 | 7,900 | 113 | | 124500 | 114 | 2,960 | 93 | 70 | 24 | 135 | .01 | 21.3 | 4,240 | 1,230 | | 125000 | 117 | 2,910 | 93 | 70 | 24 | 135 | .01 | 16 | 4,240 | 980 | | 125200
125500 | 4.10
134 | 1,910
2,770 | 95
92 | 55
70 | 25
24 | 412
140 | .01
.02 | 4.4
25.9 | 3,670
4,240 | 1,970
150 | | • | | • | | | | | | | | | | 126300
127000 | .54
108 | 710
2,740 | 80
98 | 70
103 | 25
25 | 590
103 | .01
.04 | 1.4
20 | 900
3,050 | 75
890 [.] | | 128500 | 225 | 2,460 | 52 | 99 | 25 | 62 | .04 | 29.6 | 3,050 | 113 | | 143200 | 2.74 | 1,310 | 80 . | 75 | 29 | 292 | .01 | 4.2 | 2,150 | 680 | | 143500 | 108 | 1,610 | 94 | 100 | 28 | 57 | .01 | 23.9 | 3,440 | 175 | | 144000 | 23.3 | 810 | 85 | 70 | 29 | 120 | .01 | 10.7 | 3,200 | 117 | | 144550 | 2.14 | 750 | 95 | 62 | 30 | 337 | .01 | 2.3 | 1,150 | 370 | | 144600
211900 | .51
21.6 | 560
240 | 50
10 | 44
42 | 31
31 | 240 | .01 | 1.3 | 800 | 380 | | 212000 | 18.3 | 240
3,010 | 10
93 | 73 | 31
29 | 17
285 | .01
.01 | 10.5
5.2 | 275 2,220 | 174
355 | | 222000 | 20.5 | 5,010 | ,, | , , | 4.3 | 203 | .01 | 3.2 | 2,220 | 333 | TABLE 2.--Indices for basin and climatic characteristics used in multiple regressions--Continued | Station
number | Drainage
area (mi ²) | Mean basin
elevation
(ft) | Forest cover
(percent of
basin) | Annual precipi-
tation (inches) | Minimum mean
daily January
temperature (°F) | Main channel
slope (ft/mi) | Percent area
of lakes | Channel
length (mi) | Stream source
elevation (ft) | Gage elevation
(ft) | |-------------------|-------------------------------------|---------------------------------|---------------------------------------|------------------------------------|---|-------------------------------|--------------------------|------------------------|---------------------------------|------------------------| | | A | E | F | P | T | SLP | LK | L | SE | GE | | 14213200 | 127 | 3,950 | 93 | 100 | 26 | 227 | 0.09 | 25.4 | 12,300 | 1,500 | | 213500 | 13.2 | 3,950 | 93 | 106 | 23 | 144 | .16 | 6.9 | 4,700 | 3,213 | | 214000 | 5.87 | 4,490 | 92 | 86 | 25 | 303 | 3.42 | 5.2 | 4,750 | 3,400 | | 214500 | 11.7 | 3,980 | 96 | 88 | 25 | 356 | .18 | 5.5 | 4,800 | 3,227 | | 215000 | 26.0 | 4,000 | 96 | 90 | 25 | 294 | 1.55 | 8.8 | 4,750 | 2,260 | | 2 15500 | 11.6 | 2,960 | 100 | 105 | 25 | 200 | .87 | 4.2 | 5,000 | 2,490 | | 216000 | 227 | 3,540 | 95 | 104 | 24 | 141 | -45 | 36.7 | 12,300 | 1,080 | | 216500 | 131 | 3,180 | 95 | 119 | 26 | 80 | .16 | 19.1 | 4,040 | 1,200 | | 216800 | 22.4 | 2,920 | 78 | 132 | 27 | 367 | .01 | 11.4 | 10,700 | 1,330 | | 218000 | 481 | 3,120 | 93 | 113 | 25 | 68 | 1.92 | 51.9 | 12,300 | 576 | | 218300 | 2.31 | 1,660 | 99 | 115 | 28 | 832 | .01 | 2.6 | 2,880 | 550 | | 219000 | 64.9 | 2,410 | ' 98 | 102 | 27 | 128 | .03 | 16.2 | 4,000 | 520 | | 219500 | 665 | 2,830 | 95 | 112 | 27 | 50 | 2.57 | 67.8 | 12,300 | 180 | | 219800
221500 | 12.6
40.8 | 2,100
980 | 100
91 | 105
76 | 28
29 | 455
94 | .01
.13 | 5.5
17.9 | 3,000
1,940 | 500
287 | | 221300 | 40.6 | 300 | 72 | ,, | | 74 | .13 | | 1,540 | 20, | | 222500 | 125 | 1,940 | 99 | 93 | 28 | 78 | .02 | 23.3 | 3,840 | 367 | | 222700 | .53 | 250 | 35 | 45 | 31 | 80 | .01 | 1.5 | 275 | 205 | | 223000 | 179 | 2,100 | 99 | 96 | 29 | 83 | .29 | 39.1 | 9,680 | 150 | | 223500
223800 | 198
1.06 | 1,880
580 | 98
95 | 82
46 | 29
32 | 73
525 | .02
.01 | 45.2
2.05 | 9,680
1,400 | 20
30 | | 223600 | 1.00 | 300 | 33 | 40 | 32 | 323 | .01 | 2.05 | 1,400 | 30 | | 224500 | 56.5 | 4,330 | 91 | 102 | 20 | 188 | .03 | 16.6 | 6,760 | 1,290 | | 225500 | 19.2 | 4,700 | 74 | 107 | . 21 | 354 | 4.18 | 8.2 | 6,990 | 2,840 | | 226500 | 287
1.22 | 4,230
4,360 | 88
95 | 95
95 | 21
2 4 | 111
1,250 | .46
.01 | 24
2.15 | 9,200
5,330 | 1,050
2,530 | | 226800
226900 | 1.82 | 3,760 | 95 | 100 | 24 | 1,080 | .01 | 2.25 | 4,620 | 2,010 | | 230000 | 50 | 4,010 | 94 | 99 | 22 | 275 | . 03 | 12.1 | 4,200 | 1,100 | | 231100 | 229 | 2,460 | 80 | 65 | 26 | 1,080 | .01 | 3 | 4,660 | 895 | | 232000 | 66.3 | 3,740 | 75 | 75 | 25 | 123 | .01 | 15.5 | 4,800 | 1,290 | | 232500 | 321 | 4,130 | 76 | 84 | 23 | 84 | .16 | 38.2 | 7,300 | 1,220 | | 233500 | 1,042 | 3,760 | 86 | 86 | 24 | 30 | .21 | 62.6 | 9,360 | 759 | | 235000 | 1,162 | 3,430 | 86 | 72 | 25 | 16.5 | .19 | 89.4 | 9,360 | 357 | | 235300 | .79 | 2,580 | 99 | 85 | 28 | 890 | .01 | 1.8 | 3,290 | 1,750 | | 235500 | 16.4 | 2,450 | 76 | 87 | 28 | 276 | .13 | 5.7 | 4,320 | 1,150 | | 236200 | 141 | 2,330 | 90 | 84 | 28 | 43 | . 02 | 22.7 | 3,300 | 600 | | 236500 | 156 | 1,990 | 90 | 83 | 28 | 39 | .02 | 27 | 3,300 | 398 | | 237000 | 3.29 | 985 | 52 | 56 | 29 | 178 | .01 | 2.7 | 1,000 | 668 | | 237500 | 37.8 | 1,640 | 76 | 60 | 29 | 136 | .01 | 10.8 | 2,320 | 470 | | 238000 | 1,400 | 3,150 | 86 | 72 | 26 | 14 | .16 | 99.9 | 9,360 | 227 | | 239000
239100 | 77.6
.36 | 630
650 | 91
95 | 56
48 | 28
30 | 35
105 | .01
.01 | 26.4
1.15 | 2,500
660 | 110
550 | | 233100 | | | | | 30 | 203 | .01 | 2.23 | 000 | | | 239700 | .38 | 470
2,150 | 80
93 | 46 | 31 | 390 | .01 | 1.1 | 720 | 2 3 5 | | 241500
242500 | 120
474 | 2,130 | 93
94 | 97
84 | 29
29 | 86
78 | .18
1.53 | 32.3
43.9 | 9,430
5,200 | 407 | | 242500 | .64 | 540 | 80 | 5 7 | 31 | 298 | .01 | 1.25 | 680 | 240 | | 243000 | 2,238 | 2,540 | 88 | 71 | 27 | 11 | .27 | 133.2 | 9,360 | 20 | | 2/2500 | 19.6 | 906 | 97 | 72 | 32 | 284 | 01 | 0 6 | 1 500 | 75 | | 243500
245000 | 119.6 | 1,390 | 97
9 9 | 72
69 | 32 | 284
49 | .01
.09 | 8.6
28.8 | 1,500
3,920 | 100 | | 247500 | 65.8 | 1,190 | 88 | 94 | 32 | 48 | .03 | 19.4 | 1,920 | 30 | | 248100 | 1.13 | 280 | 90 | 107 | 32 | 266 | .01 | 1.6 | 920 | 10 | | 249000 | 39.9 | 1,350 | 90 | 116 | 31 | 142 | .01 | 10.6 | 2,760 | 350 | | 250500 | 15.2 | 1,180 | 99 | 103 | 30 | 150 | .01 | 7 | 2,630 | 71 | TABLE 3 .-- Summary of regression coefficients for equations, for regions shown on plate 3 | | Reg | Regression Cos | Coefficiant | | | | | Degraces on coefficient | afficiant | | | |------------------------------|------------------------------|------------------------|---|-----------------------|-----------------------------------|------------------------------|-------------------------|-------------------------|------------------------------------|-----------------------|-----------------------------------| | | 94 | | TTTTTTT | | Standard | | | DO TOTREDT | פדדכדפוור | | Standard | | Recurrence
interval,
T | Regression
constant,
a | Drainage
area,
A | Annual
precipi-
tation, | Forest
cover,
F | error of
estimate
(percent) | Recurrence
interval,
T | Regression
constant, | Drainage
area, | Annual
precipi-
tation,
P | Forest
Cover,
F | error of
estimate
(percent) | | | | Region I | <u>, , , , , , , , , , , , , , , , , , , </u> | | | | | Region VII | VII | | | | ^ | 0.193 | 98.0 | 1.51 | i | 24.9 | ď | 596.0 | 0.90 | 1, 35 | -0.21 | 75.8 | | i in | .257 | . 86 | 1.53 | ; | 24.6 | ٠ ٢ | 850 | 88 | 1.16 | 23 | 20.0 | | ១ | .288 | . 85 | 1.54 | ; | 26.9 | 25 | 2.07 | .87 | 1.03 | 25 | 54.7 | | 25 | .317 | .85 | 1.56 | ; | 31.5 | 20 | 3.46 | 98. | . 95 | 27 | 57.1 | | 50 | .332 | .86 | 1.58 | ; | 35.7 | 100 | 5.45 | .85 | .89 | 29 | 59.4 | | 100 | .343 | .86 | 1.60 | : | 40.3 | | | | | | | | | | | : | | | | | Region VIII | VIII | | | | | | region | # | | | Ľ | 803.0 | 00 0 | 1 25 | 10 0- | 41.7 | | 7 | 0.104 | 0.86 | 1.51 | ; | 39.8 | ר פר | 1.32 | 98 | 1.16 | 12.23 | 44.1 | | ı vo | .140 | . 86 | 1.53 | ! | 37.3 | 25 | 2.95 | .87 | 1.03 | 25 | 47.4 | | 10 | .158 | .85 | 1.54 | ; | 37.1 | 20 | 4.78 | 98. | .95 | 27 | 51.3 | | 25 | .176 | .85 | 1.56 | ; | 38.5
| 100 | 7.36 | .85 | .89 | 29 | 55.9 | | 20 | .186 | 98. | 1.58 | ! | 40.7 | | | | | | | | 100 | .194 | 98. | 1.60 | : | 43.5 | | | Region 1 | ដ [| | | | | | Region 1 | III | | | 1 0 | 0.186 | 06.0 | 1,35 | -0.21 | 62.8 | | | | | | | | 01 | .525 | 88. | 1.16 | 23 | 64.4 | | 7 | 0.054 | 0.86 | 1.51 | ; | 41.6 | 72 | 1.29 | .87 | 1.03 | 25 | 72.2 | | ıv | .073 | . 86 | 1.53 | ; | 42.8 | 20 | 2.22 | .86 | .95 | 27 | 81.0 | | 20 | .082 | .85 | 1.54 | } | 45.4 | 100 | 3.60 | .85 | .89 | 29 | 91.7 | | 25 | .092 | . 85 | 1.56 | ; | 50.3 | | | • | | | | | 200 | .098
.01 | 98. | 1.58 | } } | 55.1 | | | Region X | U i | | | | 700 | 707. | 0 | 7.00 | ; | | u | 0 440 | c | 1 25 | - 6 | 1 00 | | | | Region | 2. | | | 9 9 | 1.16 | 88 | 1.16 | 23 | 1.60 | | | | • | 1 | | | 25 | 2.54 | .87 | 1.03 | 25 | 104 | | 7 | 0.059 | 0.86 | 1.51 | ; | 39.3 | 200 | 4.03 | . 86 | . 95 | 27 | 115 | | ĸ | .081 | .86 | 1.53 | } | 38.5 | 100 | 6.05 | . 85 | 68. | 29 | 129 | | 70 | .092 | .85 | 1.54 | ŀ | 36.9 | | | | | | | | 25 | .105 | .85 | 1.56 | 1 | 39.9 | | | Region XI | 뵈 | | | | 20 | .112 | .86 | 1.58 | : | 42.4 | | | | | | , | | 100 | .119 | 98. | 1.60 | ; | 46.0 | un (| 0.450 | 0.90 | 1.35 | -0.21 | 9.99 | | | | | | | | 2 . | 1.30 | 9 6 | 1.10 | 5.5 | 7.70 | | | | IIO F FRANCE | »I | | | ין ני
יו | נייט
נייט | 98 | 5 6 | . 27 | 72.1 | | un | 0.982 | 0.90 | 1.35 | -0.21 | 65.1 | 3 5 | 11.5 | 28 | 68 | 29 | 0.88 | | 10 | 2.87 | 88. | 1.16 | 23 | 73.9 | 3 | | 3 | <u>;</u> | 1 | | | 25 | 7.51 | .87 | 1.03 | 25 | 91.1 | | | Region XII | XII | | | | 20 | 13.6 | 98. | .95 | 27 | 105 | | | | | | | | 100 | 23.4 | . 85 | . 89 | 29 | 121 | L D | 0.157 | 06.0 | 1.35 | -0.21 | 93.6 | | | | | | | | 10 | .629 | 88. | 1.16 | 23 | 54.0 | | | | Region VI | VI. | | | 2 5 | 1.76 | .87 | 1.03 | 25 | 56.6 | | • | | 6 | , | | | 50 | 30.5 | 98. | 36.
36. | 27 | 0.79 | | 'n | 0.250 | 0.90 | 1.35 | 10.01 | 7.00 | 700 | 4.83 | e
C | 68. | 67 | 87.8 | | 7 70 | 147. | 60
60 | 1.10 | | 45.2 | | | | | | | | 7 4 | | 9 | 3 6 | . 27 | 55.7 | | | | | | | | 2 6 | 4.70 | | 6 | - 29 | 66.2 | | | | | | | | | 2 1 1 | , , , , | TABLE 4.--Maximum and minimum values of basin and climatic characteristics at gaging stations, by flood regions | | Drainage
area,
A | Annual precipi-
tation, | Forest
cover, | |--------------------|------------------------|----------------------------|------------------| | Region I | | | | | Maximum
Minimum | 262
•24 | 124
23 | | | Region II | | | | | Maximum
Minimum | 2,238
.15 | 199
35 | | | Region III | | | | | Maximum
Minimum | 999
.15 | 201
32 | ~ ~ | | Region IV | | | | | Maximum
Minimum | 1,042
1.22 | 132
65 | | | Region V | | | | | Maximum
Minimum | 1,297
.38 | 36
10 | 95
. 01 | | Region VI | | | | | Maximum
Minimum | 434
•65 | 106
10 | 99
.01 | | Region VII | | | | | Maximum
Minimum | 1,792
-77 | 108
19 | 99
.01 | | Region VIII | | | | | Maximum
Minimum | 2,220
1.18 | 45
19 | 100
80 | | Region IX | | | | | Maximum
Minimum | 3,550
-66 | 38
12 | 99
.01 | | Region X | | | | | Maximum
Minimum | 1,042
.21 | 22
10 | 78
.01 | | egion XI | | | | | Maximum
Minimum | 2,500
.54 | 40
10 | 87
.01 | | egion XII | | | - | | Maximum
Minimum | 234
1.80 | 10
10 | .01 |